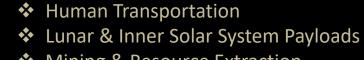


GO: Advanced Propulsion NASA Space Technology Mission Directorate

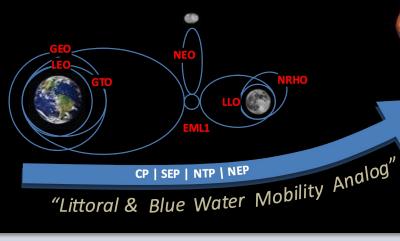
STMD welcomes feedback on this presentation. Please visit <u>https://techport.nasa.gov/framework/feedback</u> if you have any questions or comments regarding this presentation.



SPACE FLIGHT ARCHITECTURE DOMAINS

Exploration, Science, Commerce & Security

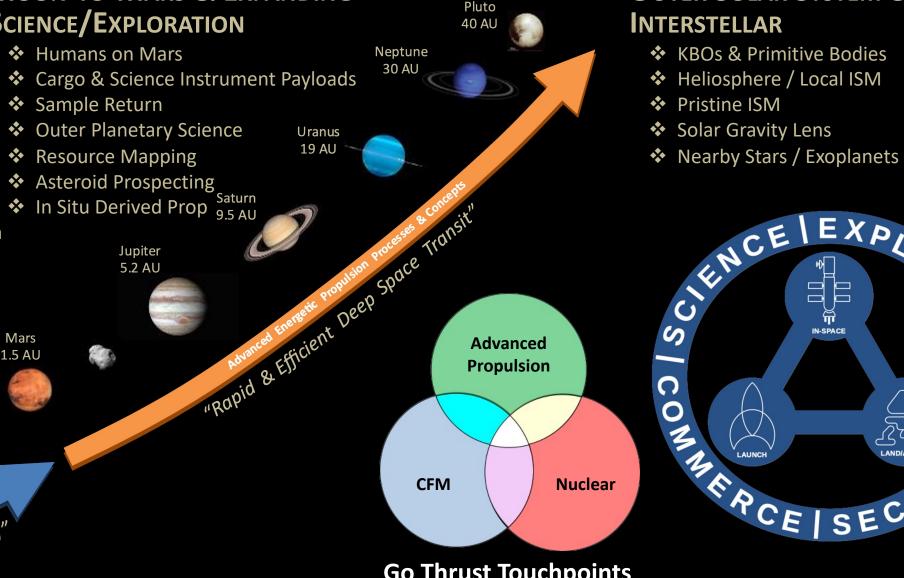
LEO TO CIS-LUNAR CLPS/ARTEMIS & CIS-LUNAR DEVELOPMENT



Mining & Resource Extraction

✤ Manufacturing

- Fuel Depots / In Situ Derived Prop
- Space Solar Power
- Outposts (In-Space & Surface)
- Orbital Debris Mitigation and Remediation
- Planetary Defense Assets
- National Security Space Assets


"Commercially Sustained Cis-Lunar Infrastructure"

MESO-SOLAR MOON-TO-MARS & EXPANDING SCIENCE/EXPLORATION

Mars

1.5 AU

EXTRA-SOLAR OUTER SOLAR SYSTEM & INTERSTELLAR

- KBOs & Primitive Bodies >50 AU
- Heliosphere / Local ISM 100-200 AU
- Pristine ISM
- Solar Gravity Lens
- 500-800 AU 4.5-20 LY

200-400 AU

Go Thrust Touchpoints

STMD STRATEGIC FRAMEWORK ENVISIONED FUTURE

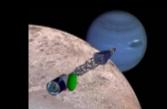
GO Thrust – Advanced Propulsion Vision

Produce advanced propulsion technologies that enable future exploration/science/commercial missions Developing advanced propulsion technologies to push the cutting edge farther and faster than ever before

Architecture Driven Propulsion Technologies Science/Exploration/Commerce/Security Capabilities

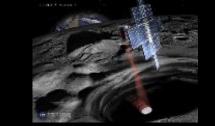
High-∆V EP Spacecraft

High-ΔV XX-kWe EP Capability


- 12-kWe Class HET \rightarrow Gateway/PPE SEP
- 7-14-kWe Class GIT \rightarrow Advanced NEXT
- 100-kWe Class Electric Thrusters including HET, MPD, VASIMR, & other options
 → Mars Transportation System

High-ΔV ESPA-Class Deep Space Spacecraft

Small Spacecraft Science, Commercial & Security Missions Requiring High- ΔV EP Capability


- Focus on ESPA-Class Sub-kW EP
- Flight Qualify & Demonstrate
- SMD SIMPLEx Mission Infusion

Outer Planetary Robotic NEP Spacecraft

Deep Space Nuclear Flagship Capabilities

- Propulsion Technologies Enabling Nuclear Propulsion Robotic Spacecraft
 - Fission Surface Power Derived NEP
 - Dynamic-RPS Derived NEP
 - Advanced LCF Derived NEP

Green Propellant Deep Space Spacecraft

Green Propellant Adoption & Infusion into Missions of Opportunity

- Facilitate Provider/User Transition
- Incentivize Mission Opportunities
- Lunar Flashlight Mission Infusion

Earth Pole Sitting Observatories Sun Pole Sitting Observatories

Observational Platforms for Science, Commercial & Security Missions Requiring Unlimited ΔV Capability

- Solar Sail Development & Demonstration
 - Monitor Solar Cruiser Project
 - Supplement SMD Technology Development as Warranted
 - Support Early-Stage Concept R&D

Thruster Advancement for Low Temperature Ops in Space

Deep Space Science Missions Requiring Cold Tolerant Storable Propulsion for Extreme Environments Access

- MON-25/MMH Bipropellant Thruster Technology
- Compact Lander Propulsion TALOS \rightarrow CLPS Infusion
- Deep Space Variant Extensible TALOS → Enceladus

INSPIRATION DRIVEN RESEARCH TRANSFORMATIONAL CAPABILITIES

Sustained investment in Advanced Energetic Propulsion research & innovation enables new breakthrough technologies

EP Fission Gas Core or Advanced Solid Core

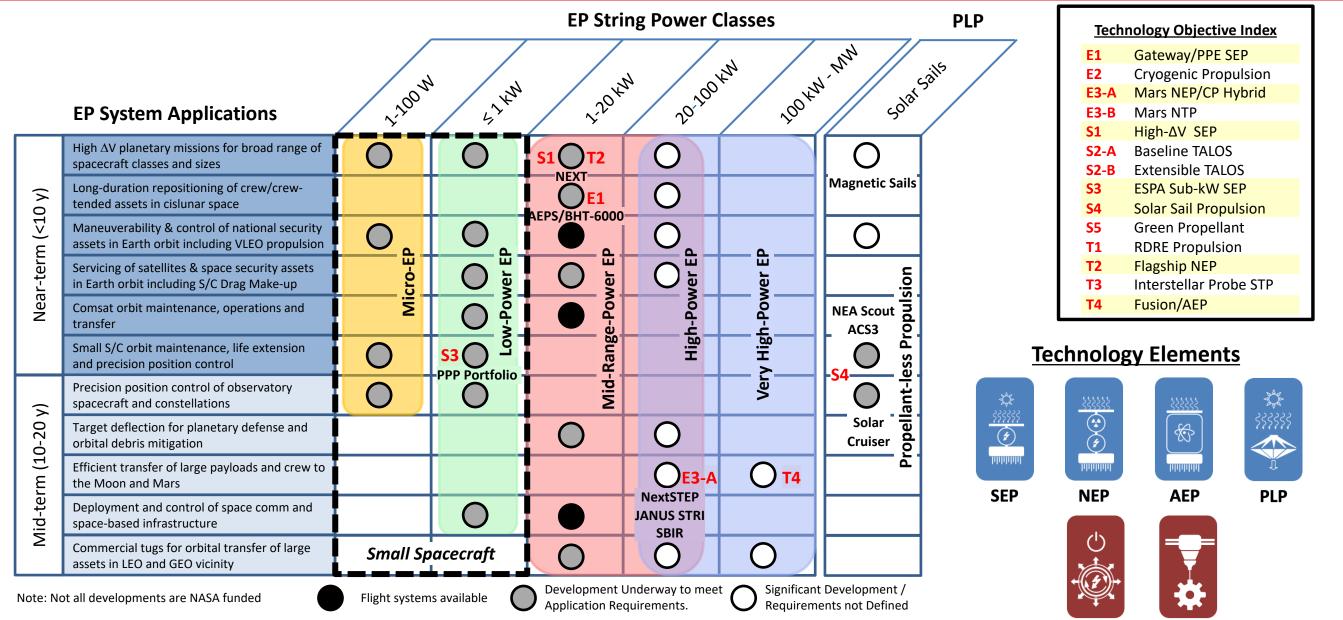
Pulsed Fission

Fusion

Breakthrough Science

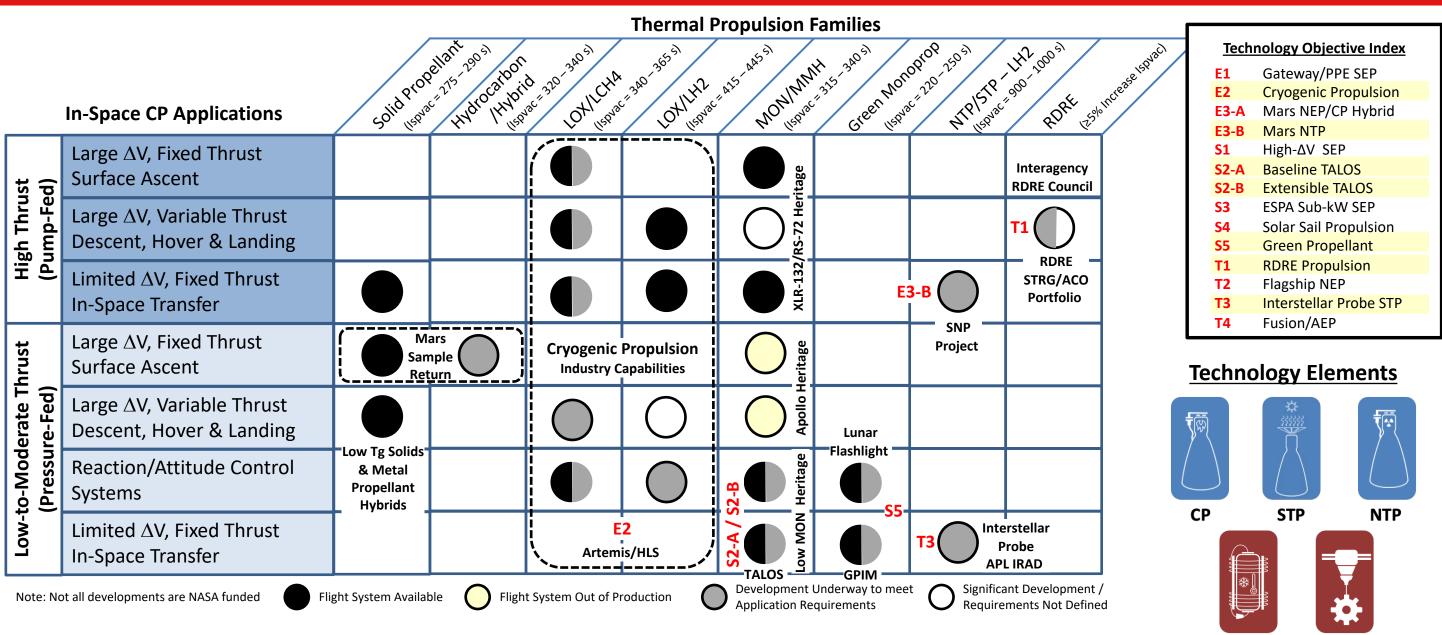
ADVANCED PROPULSION CAPABILITY OUTCOMES

Propulsion Technology Development Streams


Lunar Gateway		Artemis/Mars			Mars Transport				EXPLORATION ARCHITECTURES	
Exploration (E)1: Gateway/PPE SEP		E2: Cryogenic CP			E3-A: NEP/		ybrid E3-B: NTP			
Develop 12.5-kWe SEP string and enable 50-kWe thruster array for lunar orbit maneuvering and NRHO station keeping		Affordable, highly reusable cryogenic propulsion to provide in-space transport and lunar surface access with extensibility to Mars			Multi-MW NEP to provide cruise ΔV plus affordable & highly reusable cryogenic propulsion to provide gravity well ΔV		High thrust NTP to provide gravity well ΔV plus reactor integrated Orbital Maneuvering System (OMS) to provide supplemental ΔV		TRL 6-8	EXPLORE
Exploration Architecture Systems Development									>	
Flagship SEP Extreme Access Storable P		torable Propulsion	High-	ΔV Small S/C	Unique F	Platforms	Green Prop Adoption		SCIENCE, COMMERCE & SECURITY	
Science (S)1: High-ΔV SEP	S2-A: Ba	seline TALOS	S2-B: Extensible TALOS	S S3: ESP	PA Sub-kW SEP	S4: So	lar Sail	S5: Green Propulsion		2
Develop 7-14 kWe gridded ion EP string to enable more ambitious very high-ΔV deep space robotic missions			Extensible TALOS: Deep space variant modifications & qualification for high- throughput, long-burn orbi transfer and extreme acces	tolerant su tolerant su	qualified high- t, radiation- ıb-kW Xenon HET igh-ΔV ESPA-class e missions	Matured solar sail technology to provide essentially unlimited S/C ΔV as an enabler of unique platform capabilities		Facilitate green propellant infusion by incentivizing mission adoption and PPP opportunities to mature a wide range of thrust classes	TRL 6-8	
Science, Commerce & Security Technology Development										
Transformational CP		Flagship NEP		Rapid Tra	Rapid Transit Interstellar Probe		Advanced Energetic Propulsion			INSPIRATION DRIVEN RESEARCH
Transformational (T)1: RDRE		T2: Robotic S/C NEP		тз	T3: Near Sun STP		T4: Fusion/AEP Concepts			
Early-stage R&D focused on RDRE maturation & prototype demonstrations to achieve transformational gains in CP performance for launch, in-space, and lander systems		Propulsion technologies enabling low-to-moderate power NEP transportation systems (FSP/Dynamic- RPS/LCF Derived NEP)		transformatic solar perihelio and the attair	Early-stage R&D focusing on transformational STP capability to enable solar perihelion burn Oberth maneuvers and the attainment of high solar system escape velocities		Early-stage R&D focused on rapid prototype demonstration of nuclear fusion propulsion technologies and AEP concepts to achieve transformational capabilities for fast & efficient solar system wide access		TRL 3-6	
Transformational Capability R&D										
Near Term								Long Term		

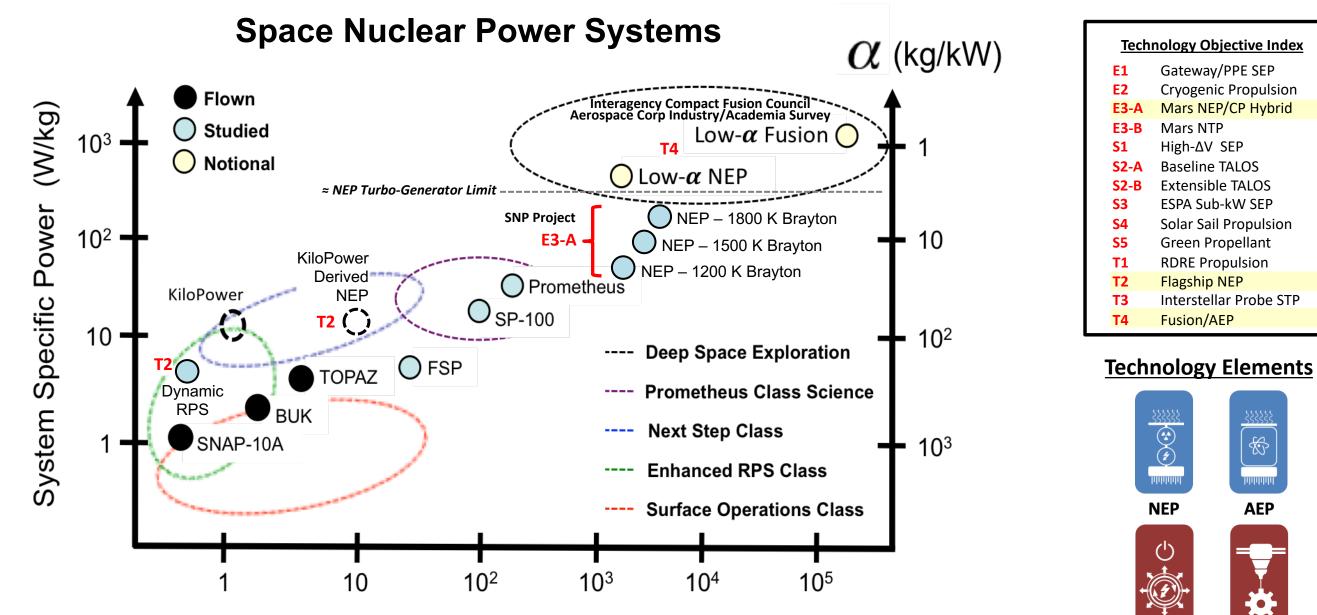
SOA – ELECTRIC PROPULSION SYSTEMS

Historical Developments & Projected Capabilities


P&D AMSM

SOA – CHEMICAL & THERMAL PROPULSION SYSTEMS

Historical Developments & Projected Capabilities


CFM

AMSM

Historical Developments & Projected Capabilities

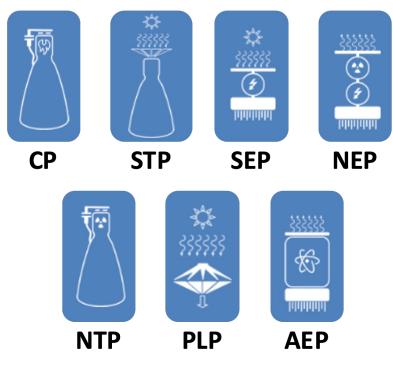
Total System Power (kW)

P&D

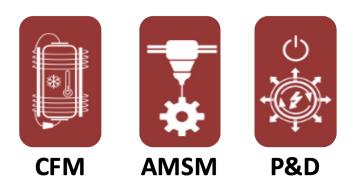
AMSM

- Architecture Driven Propulsion Technology Strategy is Essentially On Track
 - Emphasis on sustained portfolio execution & commitment to deliveries, including accommodation of ground infrastructure impacts
 - Additional mid-TRL investment is needed in a few priority areas (e.g., ESPA-Class Sub-kW EP & Beyond NextSTEP High-Power EP)
- Transformational Capability R&D Portfolio in need of Programmatic Restructuring & Significant Funding Augmentation
- High Level Development Strategy

Architectural Outcome	Technology Capability Goal	Recommended Action	Investment Trend
Gateway/PPE SEP	12 kWe & 6 kWe HET Strings	Sustain Execution & Commitment to PPE/Gateway Delivery	Sustain
Flagship High-ΔV SEP	7-14 kWe Gridded Ion EP String	Develop Advanced NEXT via Interagency Collaboration + SBIR + PPP	Augment
High-Power Exploration NEP	100 kWe HET, MPD, VASIMR, etc.	Industry Led Development/Qual via STRG + SBIR + PPP (i.e., Beyond NextSTEP)	Augment
ESPA-Class High-ΔV SEP	0.5-1 kWe (nominal) EP String	Industry Led Development/Qualification/Demo via SST/GCD PPP	Augment
Extreme Cold Environment CD	Baseline MON25/MMH TALOS	Sustain Execution & Commitment to PPP CLPS Delivery	Sustain
Extreme Cold Environment CP	Deep Space Variant TALOS	Commit to Industry Led Development/Qualification via PPP	Augment
Green Propellant CP	Reduced Cost / Expanded Thrust Range	Facilitate Infusion & Industry Led Development via SBIR/STTR + PPP + Incentives	Sustain
Unlimited ΔV Platforms PLP	Flight Demonstrated Solar Sail Technology	Monitor Solar Cruiser + Supplemental Tech Dev + SBIR/STTR + Early-Stage R&D	Sustain
RDRE CP	Transformative CP Performance	Sustain Early-Stage R&D & Transition to FY23 Mid-TRL Prototype Development	Augment
Flagship NEP	Transformative Robotic Science NEP	Evaluate/Facilitate FSP/Dynamic-RPS/LCF NEP System Integration & Maturation	Augment
Interstellar Probe Near Sun STP	Transformative Near Sun STP Capability	Sustain Early-Stage R&D & Transition to FY23 Mid-TRL Prototype Development	Augment
Fusion/AEP Concepts	Transformative Fusion/AEP Capability	Establish Comprehensive Nuclear Fusion/AEP Early-Stage R&D Portfolio	Augment



ADVANCED PROPULSION TECHNOLOGY DOMAIN


Taxonomy & Acronym Glossary

PROPULSION TECHNOLOGIES

CROSS-CUTTING SUPPORT TECHNOLOGIES

AEP – Advanced Energetic Propulsion ACO – Announcement of Collaborative Opportunity ACS – Attitude Control System AMSM – Advanced Materials, Structures & Manufacturing AU – Astronomical Units BHT-6000 – Busek Hall Thruster (6kWe) BUK – Soviet Era Fast Fission Space Reactor (Derived from Bouk \rightarrow "Beech Tree") **CP** – Chemical Propulsion c – Speed of Light CFM – Cryogenic Fluid Management CLPS – Commercial Lunar Payload Services EML1 – Earth Moon Lagrange Point 1 Enceladus – Icy Moon of Saturn **EP – Electric Propulsion** ESPA – Evolved Secondary Payload Adaptor FSP – Fission Surface Power GCD – Games Changing Development (Program) GEO – Geo Synchronous Orbit GIT – Gridded Ion Thruster **GPIM – Green Propulsion Infusion Mission** GTO – Geo Transfer Orbit HET – Hall Effect Thruster HLS – Human Landing System **IRAD** – Internal R&D ISM – Interstellar Medium Ispvac – Vacuum Specific Impulse KBO – Kuiper Belt Object

ACRONYMS

LCF – Lattice Confined Fusion LEO – Low Earth Orbit LLO – Low Lunar Orbit LOX – Liquid Oxygen LY – Light Year MMH – Mono-Methyl Hydrazine MON – Mixed Oxides of Nitrogen MPD – Magneto Plasma Dynamic (Thruster) MPS – Main Propulsion System NASA – National Aeronautics and Space Administration NEA – Near Earth Asteroid NEO – Near Earth Object **NEP – Nuclear Electric Propulsion** NEXT – Next Evolutionary Xenon Thruster NRHO – Near Rectilinear Halo Orbit NTP – Nuclear Thermal Propulsion **OMS – Orbital Maneuvering System** PLP – Propellant-Less Propulsion **PPE – Propulsion & Power Element** (Foundational Gateway) **PPP – Public Private Partnership PPU – Power Processing Unit** P&D – Power & Distribution R&D – Research & Development **RCS** – Reaction Control System **RDRE – Rotating Detonation Rocket Engine RPS** – Radioisotope Power System SBIR – Small Business Innovation Research

(Program)

S/C – Spacecraft SEP – Solar Electric Propulsion SIMPLEx – Small Innovative Missions for **Planetary Exploration** SMD – Science Mission Directorate SOA – State of Art SNAP-10A – System for Nuclear Auxiliary Power SNP – Space Nuclear Propulsion (Project) SP-100 – Space Reactor Prototype SST – Small Spacecraft Technology (Program) STP – Solar Thermal Propulsion STRG – Space Technology Research Grants STTR – Small Business Technology Transfer TALOS – Thruster Advancement for Low **Temperature Operations in Space** TDM – Technology Demonstration Mission (Program) **TOPAZ – Soviet Era Thermal Fission Space Reactor TP** – **Tipping Point** TRL – Technology Readiness Level T/W – Thrust-to-Weight (ratio) VASIMR – Variable Specific impulse Magnetoplasma Rocket VLEO – Very Low Earth Orbit ZBO – Zero Boil Off α – System Specific Mass (kg/kW) ΔV – Spacecraft Velocity Change

CHANGE LOG 2023

Slide 2 – Space Flight Architecture Domains

- New Bullet "Human Transportation" bullet under LEO to Cislunar
- Change Bullet "Science Payloads" to "Lunar and Inner Solar System Payloads" under LEO to Cislunar
- New Bullet " Cargo & Science Instrument Payloads" under Meso-Solar

Slide 3 – STMD Strategic Framework Envisioned Future

• Change Bullet – "Sustained Investment in Advanced Energetic Propulsion research & innovation enables new breakthrough technologies

Slide 4 – Advanced Propulsion Capability Outcomes

- Change E3-B: NTP "... OMS ..." to "... Orbital Maneuvering System (OMS) ..."
- Change S2-A: Baseline TALOS "... extreme environment ..." to "... universal ..."

Slide 5 – SOA – Electric Propulsion Systems

- Add Technology Reference "AEPS/BHT-6000"
- Add Technology Reference "Magnetic Sails"

Slide 6 – SOA – Chemical & Thermal Propulsion Systems

Add Technology Reference – "Low Tg Solids & Metal Propellant Hybrids"

Slide 8 – SOA – Conclusions & High Level Development Strategy

• Change Technology Capability Goal for Gateway/PPE SEP – "12 kWe & 6 kWe HET Strings"

Slide 9 – Advanced Propulsion Technology Domain

- Add Acronym "KBO Kuiper Belt Object"
- Add Acronym "OMS Orbital Maneuvering System"