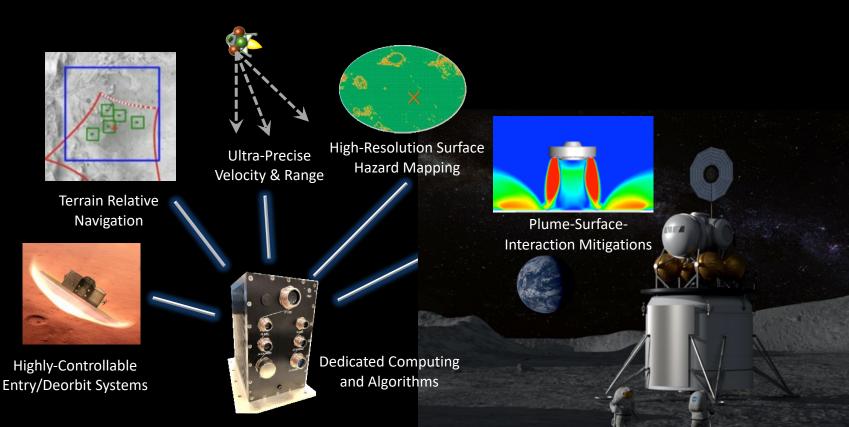


LAND: Precision Landing and Hazard Avoidance NASA Space Technology Mission Directorate


STMD welcomes feedback on this presentation. Please visit <u>https://techport.nasa.gov/framework/feedback</u> if you have any questions or comments regarding this presentation.

LAND: Technologies to Precisely Land Payloads and Avoid Landing Hazards

NASA

Developing entry, descent and landing technology to enhance and enable small spacecraft to Flagship-class missions across the solar system

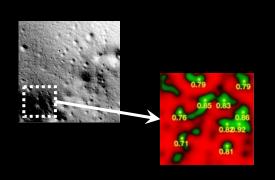
Aggregated and Sustainable Sites on the Moon and Mars

1 km

Capabilities evolvable for many solarsystem destinations

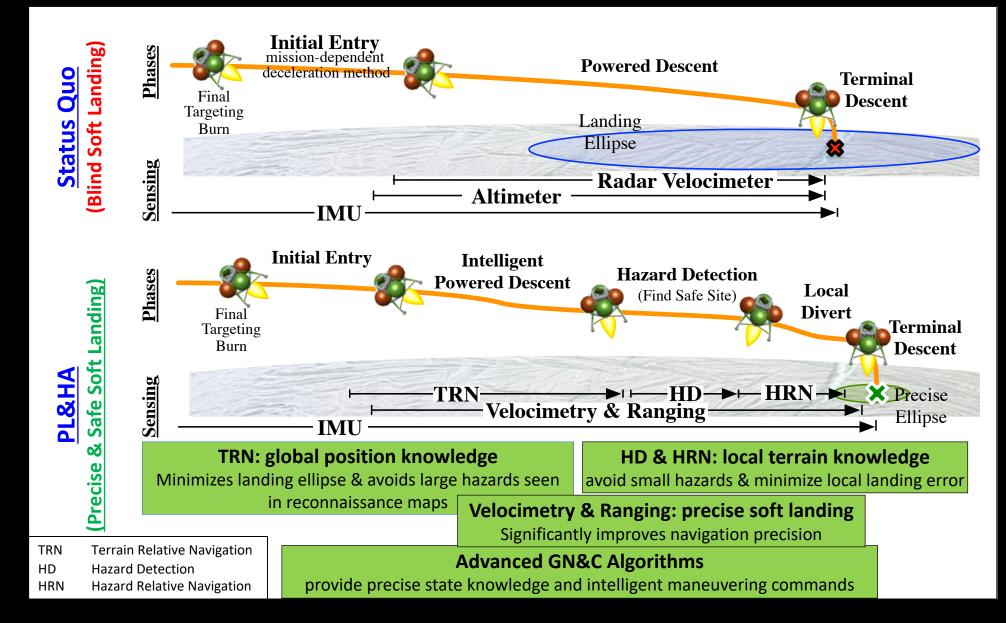
Enable anytime landings on treacherous terrain with independence from lighting Expand entry opportunities to a broader range and variance in atmospheric environments Reduce the risk of landings to any destination for human & robotic missions and their existing surface infrastructure Reduce operations time for a rover or human to reach an interesting site Aggregate resources in one surface region for missions requiring multiple landings

Landing Precision: Description of Envisioned Future


NASA

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

EDL: Entry, Descent and Landing (solar bodies with atmospheres) DDL: Deorbit, Descent and Landing (airless solar bodies) PL&HA: Precision Landing & Hazard Avoidance (general term for precise safe landing capabilities)

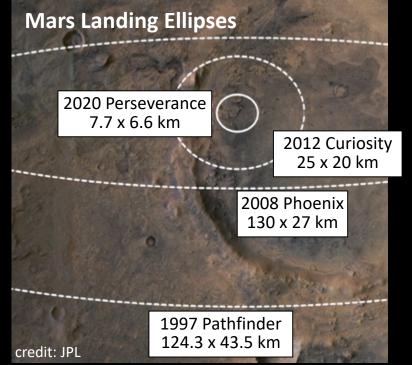

• What are some of the challenges?

- Precise and safe landing is not yet possible away from Earth
- Human & robotic PL&HA differs **no one-size-fits-all** for all missions but capabilities are evolvable
- Human-class missions currently target 50-100m precision, whereas some robotic-class missions target 10-50m precision
- Anytime landing requires functionality independent of surface lighting conditions
- Description of Capability targets (addressing the current, highest-priority EDL technology gaps)
 - Highly-controllable EDL/DDL systems (hardware and algorithms) increase entry & descent maneuverability to facilitate fuel-efficiency and significant landing-ellipse minimization
 - Terrain relative navigation (TRN) facilitates propulsive/aero maneuvers to minimize landing ellipses and avoid large surface hazards identified in reconnaissance maps – global navigation without GPS
 - Precise velocity/range sensing facilitates soft landing and improves EDL/DDL navigation precision (current sensors are high size/mass/power, plus have high component/system-integration costs)
 - High-resolution terrain mapping during descent and landing facilitates hazard detection (HD) and avoidance of surface features not identifiable within reconnaissance maps – can also improve TRN maps in real time
 - Plume-Surface Interaction (PSI) mitigations facilitate improved landing sensing for soft, precise touchdown and minimize debris risks to the lander and other aggregated surface assets
 - Dedicated PL&HA computing minimizes processing-overload risks to primary flight computer during the critical EDL/DDL phase

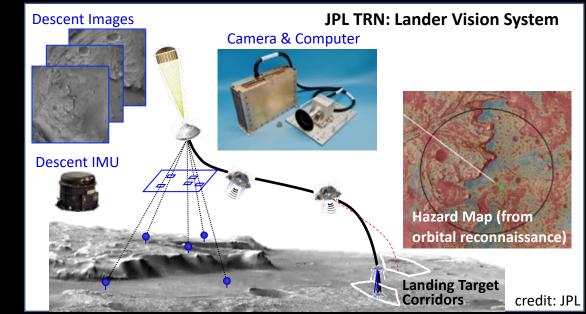
Landing Precision: Status Quo Vs. PL&HA

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

Landing Precision: State of the Art (SOA)



Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards



credits: JPL

- Mars 2020 Mission successfully landed the Perseverance rover within a 7.7 x 6.6 km landing ellipse on February 18, 2021
- EDL system: Viking-style entry body, parachute-deployment range trigger, Apollo-based entry guidance (bank-angle reversal maneuvers), camera-based TRN (JPL Lander Vision System), and JPL Doppler radar (velocity and range)
- JPL TRN fuses camera images and IMU data for precise position localization relative to a reconnaissance map → enabled landing at a location identified as safe within reconnaissance maps (passive optical system requires lighted terrain on descent)

TRN Note: passive-optical TRN was aboard the 2021 OSIRIS-REx mission to asteroid Bennu. Multiple commercial, passive-optical TRN systems are also being developed for commercial robotic lunar landers.

Landing Precision: Development Strategy

NASA

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

Overarching Goal

 Develop, infuse, and commercialize technologies applicable to robotic and human landers that become part of the future suite of off-the-shelf GN&C (Guidance/Navigation/Control) capabilities for precise safe landing

Overview of Approach

- Sustain an EDL/DDL knowledge base and simulation to capture near-term and future human and robotic mission needs and the evolving commercial and government PL&HA capabilities
- Prioritize development and infusion of cross-cutting EDL/DDL systems, sensors, avionics, and algorithms applicable to human and robotic missions
- Leverage multiple test paradigms (lab, flight, suborbital, space) to accelerate TRL advancement and infusion
- Pursue technology transfer, public-private partnerships, commercial spin-offs and spin-ins to promote closure of EDL/DDL capability gaps and the transition-into/leveraging-of commercial off-the-shelf (COTS) solutions

Europa

Ice sheets, cracked topography, penitentes

Enceladus Geysers, cryo-volcanism

Unknown terrain

Landing Precision: Strategy Visualization with Focal Approaches

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

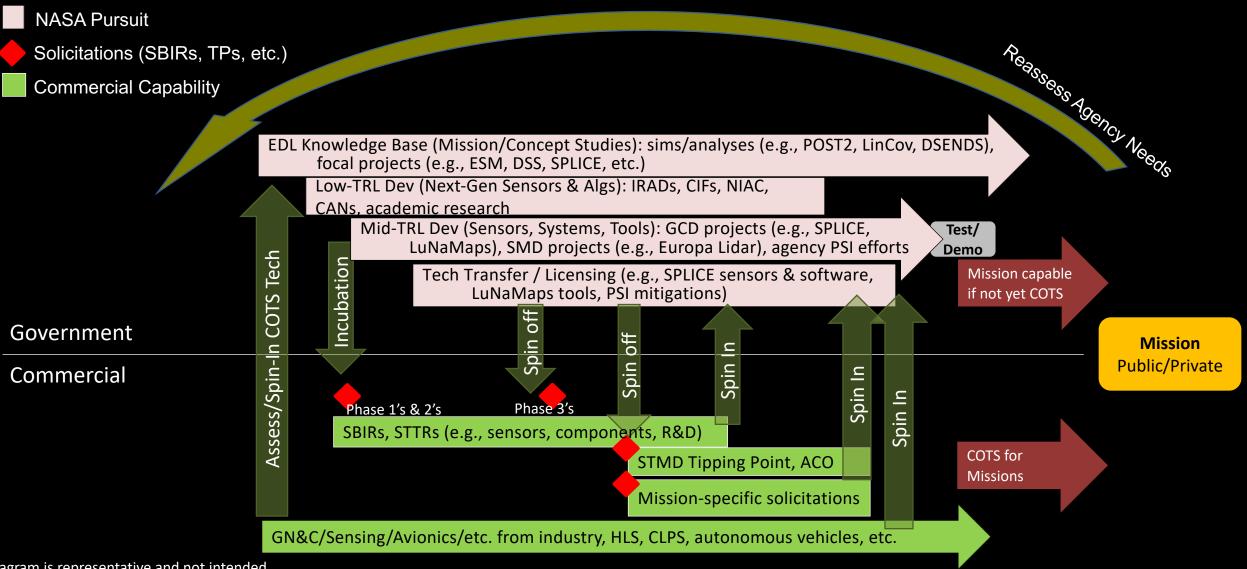


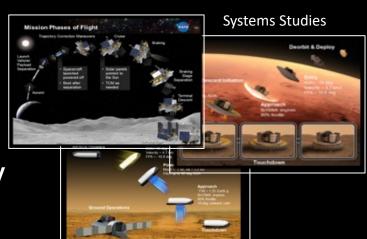
Diagram is representative and not intended to be exhaustive of all approach options

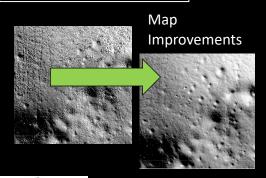
Landing Precision: Approach to Develop the Capabilities

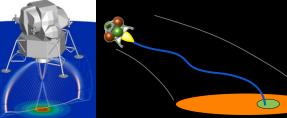
Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

Leverage focal agency projects, solicitations and partnerships to

Evaluate highly-controllable EDL/DDL systems for future implementation


- study landing-precision improvements with novel aerodynamic bodies, new control architectures (e.g., dual-axis, direct-force) and GN&C advances
- coupled to the separate LAND '20t' package for Moon/Mars global access and the LAND Science package for large- and small-spacecraft entry capabilities


Develop onboard PL&HA hardware for anytime landing: TRN, HD, Velocimetry

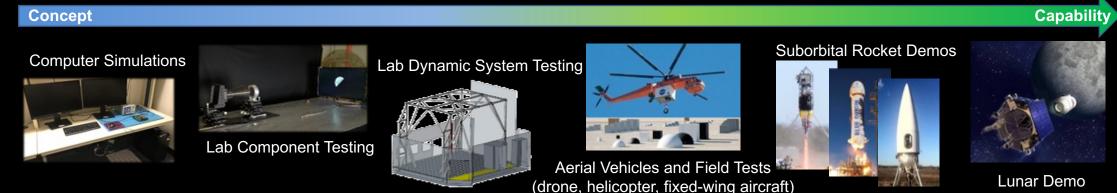

- within NASA, initially pursue lidar development and commercialization to provide
 - active terrain sensing to enable TRN and HD during descent/landing over dark, shadowed, or illuminated surfaces
 - a baseline capability upon which to build future PL&HA architectures and approaches
- solicit new sensor capabilities (e.g., advancements in radar & lidar, multi-function sensors, reductions in size/mass/power, etc.) to incubate new innovations, facilitate technology transfer of NASA investments, and to spin in industry advancements
- pursue dedicated PL&HA computers for sensor fusion and algorithms processing, aligned with the EXPLORE Avionics package pursing advancement in high performance spaceflight computing

Enable algorithms & processes supporting precise navigation & safe landing

- PSI modeling and validation via simulation, ground testing and flight instrumentation to develop landing-system and surface-infrastructure mitigations during lander terminal descent & touchdown
- navigation methods adaptable to evolving navigation infrastructure (onboard sensors, surfacebased navigation aids, orbiting assets) and to support aggregating subsequent landed assets
- mapping tools/processes to improve TRN maps, surface ops, & mission planning
- hazard detection & advanced guidance algorithms for landing-site identification and efficient descent/divert maneuvering
- Disseminate algorithms, tools, processes via NASA software release and tech transfer, and leverage follow-on solicitations to evolve capabilities and identify new innovations

Plume Surface

Interactions


Advanced PL&HA Algorithms

Landing Precision: Approach to Mature & Transition the Capabilities

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

Leverage multiple test and validation paradigms to develop, mature, and infuse capabilities

- Incubate public/private partnerships and technology commercialization/dissemination for TRL maturation and to maximize infusion/availability to government and commercial spaceflight missions
 - Academic partnerships (cooperative agreements, ECF/ESI, NSTGRO) continue to foster new innovations and incubate low-TRL concepts, plus
 mature the next generation of technologists and engineers
 - SBIR/STTR solicitations have been and will continue to develop PL&HA component supply chains and commercial solutions for current and nextgeneration sensors, including to incubate and mature new low-TRL innovations
 - Tipping Point solicitations have promoted and will continue PL&HA commercialization and infusion
 - 2018 Tipping Point has promoted multiple commercial TRN implementations
 - 2020 Tipping Point is developing a next-generation suborbital capability for closed-loop GN&C/PL&HA testing
 - Discussing future solicitations for commercial Hazard Detection and integrated PL&HA systems
 - Flight Opportunities 2022 Nighttime Precision Landing Challenge promoting private development of terrain mapping sensors for hazard detection solicitation was targeted to self-illuminating or active sensor systems (lidar, radar, IR, etc.)
 - Open NASA/industry workshops are promoting ideas incubation for public-private partnerships and infusion
 - 2021 Lunar Mapping Workshop discussed mapping tools/processes, capabilities, and needs

Landing Precision: NASA Projects Implementing the Approach

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

LU

NA

MAPS

- STMD/GCD SPLICE (Safe & Precise Landing Integrated Capabilities Evolution) Project
 - Developing and field testing lidar for active terrain sensing during descent/landing over dark, shadowed, or illuminated surfaces
 - Implementing dedicated computing systems for sensor fusion and PLHA algorithms processing that can leverage the NASA High Performance Spaceflight Computing (HPSC) pursuits within the EXPLORE Avionics package
 - Commercializing technologies: Phase 3 SBIR for NDL commercialization, flight software going into NASA Software Release System, partnering with CLPS/HLS companies on TRN and HD infusion/commercialization

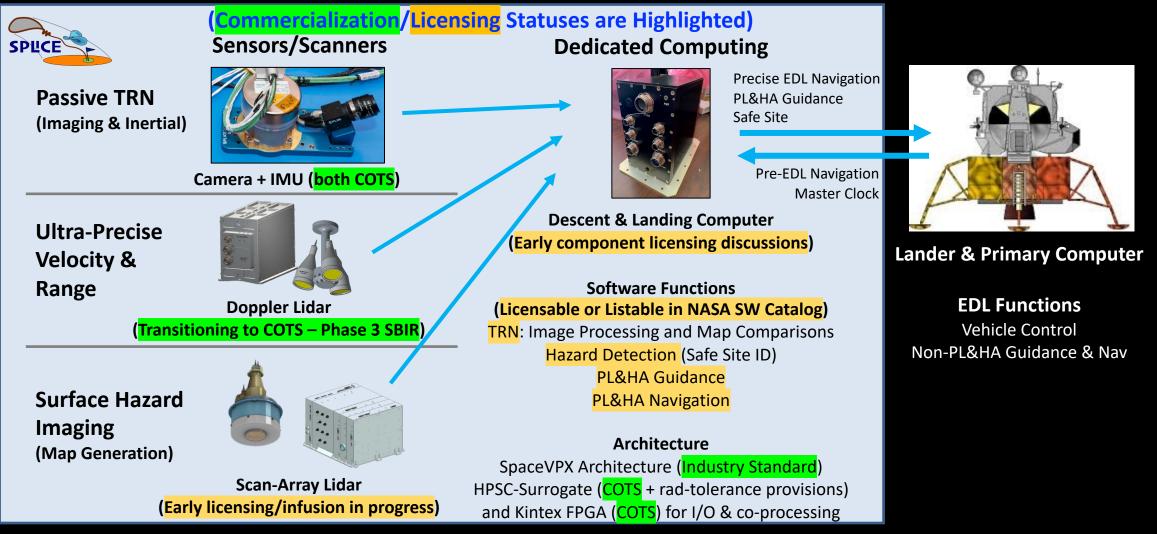
STMD/GCD LuNaMaps (Lunar Navigation Maps) Project

- Developing mapping tools and processes to provide a capability critical to future lunar missions with feedforward to Mars and other destinations (Open NASA/industry workshop in 2021 discussed tools/processes/needs)
- Will generate navigation-quality lunar maps from orbital reconnaissance imagery for onboard uses
- Will enhance maps with analog field data & synthetic surface features for ground-based algorithms assessments

PSI (Plume Surface Interaction) Projects

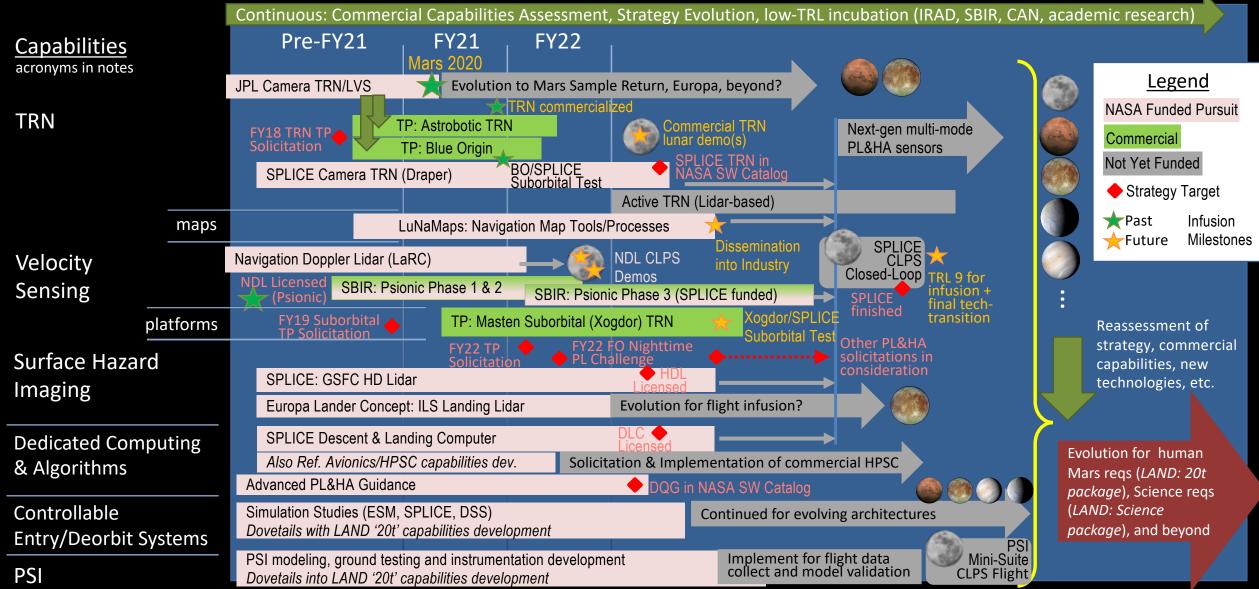
- Implementing simulation models and tools to predict PSI environments and enable smart design and risk analysis of EDL architectures
- Developing instrumentation for ground testing (at relevant scales), collecting flight data, predicting PSI effects, and validating models → goal is to enable future PSI mitigation strategies

SMD Europa Lander Concept: ILS (Intelligent Lander System)


- Developing integrated TRN, Hazard Detection & Velocimetry capabilities for the unique environment of Europa
- Technologies likely have broader mission applicability beyond Europa
- Lidar-specific investments have potential for TRN and HD applications in other missions

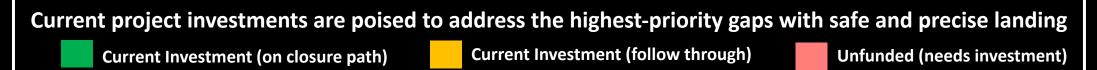
Landing Precision: Transition Status of NASA Investments (SPLICE)

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards


STMD/GCD SPLICE (Safe & Precise Landing – Integrated Capabilities Evolution) Project – Developing and Commercializing multiple sensors, algorithms, and a computing architecture for a broadly-applicable PL&HA baseline

Landing Precision: Development, Evolution & Infusion Roadmap

NASA


Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

Landing Precision: Highest-Priority Technology Gaps & the Closure Path

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

LuNaMaps Project

Gap: High-Resolution, Continuous Lunar Maps for Precise Landing

Agency PSI Efforts

- Gap: Validated Prediction of Plume Surface Interaction (PSI) for Vehicles Landing on the Moon
- Gap: Flight Instrumentation to Acquire Plume Surface Interaction Performance Data

SPLICE Project

- Gap: Navigation and guidance technologies that provide precise knowledge and maneuver planning for Lunar missions
- Gap: Precision Landing and Hazard Avoidance Test Platform (on closure path with Masten Tipping Point award for Xogdor platform development)
- Gap: Dedicated high-performance computing for precise landing and hazard avoidance algorithms and sensor fusion (tied to Avionics Gap for HPSC – High Performance Spaceflight Computing)
- Gap: Real-time mapping technologies for active terrain relative navigation (TRN) and hazard detection and avoidance during lunar descent toward landing (active TRN is increasing in priority for lunar South Pole landings)

Landing Precision: Logical Next-Steps

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

Summary of current approach

- SPLICE: developing sensors, computing and software for a baseline integrated capability for precise and safe landing
- LuNaMaps: developing and disseminating lunar mapping tools/processes for use by government and industry with lunar landing
- Europa Lander Concept Study: developing EDL technologies for the unique environment of Europa with potential for broader infusion
- Modeling and Architecture Studies: high-fidelity EDL simulations are continuing mission concept studies to evaluate highly-controllable EDL systems, model PSI and conduct ground tests, and assess PL&HA technologies that enable closure of EDL gaps and strategy evolution
- Commercialization: solicitations for public-private partnerships, SBIRs, Tipping Points, etc. are accelerating technology commercialization (spin off and spin in) plus infusion into CLPS missions and non-space applications (consider incentivizing certain EDL/PL&HA technologies for various mission classes)

What are the next steps?

- Maintain concept studies, low-TRL investments, EDL-focused SBIR solicitations, STRG/academic awards, public-private partnerships, and commercialization to identify new technologies and evolve the development strategy
- Conduct planned demonstration tests to validate models, raise TRL, and mitigate infusion risks for EDL technologies
 - Conduct simulations and ground testing to validate general PSI models toward inclusion in PSI-mitigation approaches & flight systems
 - Conduct a lunar demonstration of the SPLICE technologies being actively used (in closed loop) within a landing system
- Continue development toward future generations of EDL and Avionics Technologies
 - HPSC: continue development & commercialize \rightarrow radiation-hard, multicore processing is critical to future envisioned missions
 - Europa Lidar: monitor advancement of systems for commercialization and broader infusion prospects
 - Active TRN: Develop lidar-based TRN for anytime, anywhere global access (e.g., EDL/DDL for dark/shadowed lunar regions)
 - Develop & deploy in-situ flight instrumentation (e.g., MEDLI-3) on landers for fully-relevant model validation & PSI mitigation
 - Pursue multi-mode EDL/PL&HA sensors that further advance and miniaturize integrated capabilities

Current Investment 📃 Maintain 📃 Future Need

15

Landing Precision: Summary

Develop Technologies to Land Payloads Within 50 m Accuracy and Avoid Landing Hazards

Strategy

 Develop safe and precise landing capabilities that increase surface accessibility for anytime and anywhere global access to locations that pose significant landing risk to missions

Goal

 Infuse and commercialize technologies to become part of the future suite of COTS (Commercial Off-The-Shelf) GN&C capabilities for human and robotic landing missions

Approach

- Prioritize development of cross-cutting systems, sensors, avionics, and algorithms
- Sustain EDL knowledge base and simulation to capture and assess human and robotic mission needs
- Implement via NASA centers, academic partnerships, solicitations, public-private partnerships, etc.
- Leverage the NASA technology transfer process, publishing, licensing, etc. to transition technologies to COTS

Acronyms for Precision Landing Technologies

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

- CAN: Cooperative Agreement Notice
- CLPS: Commercial Lunar Payload Services
- DDL: Deorbit, Descent and Landing
- DLC: Descent and Landing Computer
- DSS: Descent Systems Study (project)
- DQG: Dual Quaternion Guidance
- ECF: Early Career Faculty
- EDL: Entry, Descent and Landing
- ESI: Early Stage Innovation
- ESM: Entry Systems Modeling (project)
- HD: Hazard Detection
- HDL: Hazard Detection Lidar

- HPSC: High Performance Spaceflight Computing
- IRAD: Internal Research and Development
- LVS: Lander Vision System
- NDL: Navigation Doppler Lidar
- NSTGRO: NASA Space Technology Graduate Research Opportunity
- PL&HA: Precision Landing and Hazard Avoidance
- PSI: Plume-Surface Interaction
- SBIR: Small Business Innovative Research
- SW: Software
- TP: Tipping Point (commercial partnership projects)
- TRN: Terrain Relative Navigation

