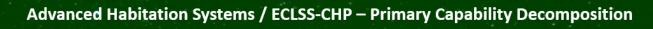


EXPLORESPACE TECH

LIVE: Advanced Habitation Systems (AHS)
NASA Space Technology Mission Directorate

STMD welcomes feedback on this presentation. Please visit https://techport.nasa.gov/framework/feedback if you have any questions or comments regarding this presentation.


AHS Investments Support Multiple Strategic Outcomes and Primary Capabilities

GO Rapid, Safe, and Efficient Space And Efficient Space Develop nuclear technologies enabling fast in-space transits. Develop nuclear Systems Cryogenic Fluid Management applications. Develop advanced propulsion technologies that enable future science/exploration missions.	In Space Transportation SCLT AHS technology improvements in CO ₂ reduction (O ₂
Space Transportation Transportation	recovery), food, and other AHS areas along with increased reliability, reduce cargo mass ~5 MT x propulsion gear ratio
Land Expanded Access to Diverse Surface Destinations • Enable Lunar/Mars global access with ~20t payloads to support human missions. • Enable science missions entering/transiting planetary atmospheres and landing on planetary bodies. • Develop technologies to land payloads within 50 meters accuracy and avoid landing hazards. • Entry, Descent, Landing, & Precision Landing	Entry Descent and Landing SCLT AHS technology improvements in CO ₂ reduction (O ₂ recovery) and food technologies reduce landed cargo mass
Live Sustainable Living and Working Farther from Earth Sustainable Sustainabl	ISRU SCLT AHS investments in CO ₂ reduction (O ₂ recovery), gas—phase contaminant separations, water contaminant removal, and monitoring are extensible to ISRU resource production
 Technologies that enable surviving the extreme lunar and Mars environments. Autonomous excavation, construction & outfitting capabilities targeting landing pads/structures/habitable buildings utilizing in situ resources. Enable long duration human exploration missions with Advanced Life Support & Human Performance technologies. 	AHS capabilities captured in NASA taxonomy in TX06 & TX07 Largest technology challenges: CO ₂ reduction (O ₂ recovery), in-flight food nutrition, GCR shielding, and
Explore Transformative Missions and Discoveries Develop technologies supporting emerging space industries including: Satellite Servicing & Assembly, In Develop technologies supporting new discoveries Develop transformative technologies supporting new discoveries Develop transformative technologies that enable future NASA or commercial missions and discoveries Advanced Avionics Systems Advanced Communications & Navigation Advanced Robotics Advanced Robotics Advanced Robotics Autonomous Systems Satellite Servicing & Assembly Advanced Manufacturing Satellite Servicing & Assembly Satellite Servicing & Assembly Rendezvous, Proximity Operations &	Autonomous Systems SCLT Advances in robotics and autonomy support AHS system maintenance/operation to prepare for crew arrival, allow crew to focus on science, and allow ECLSS processing during uncrewed periods (smaller/lower power systems)

Advanced Habitation Systems Capability Areas and Capabilities

- AHS capabilities keep astronauts healthy and productive while living in space and planetary vehicles
- Broadly characterized into vehicle Environmental Control and Life Support Systems (ECLSS) and Crew Health and Performance (CHP) Capability Areas
 - Capability Areas are further decomposed to capabilities and sub-capabilities to define gaps
 - Useful to discuss state of the art and envisioned futures for each capability area/capability
 - LIVE Thrust will evolve to include EVA suits In the future

4 ECLSS Capability Areas

Capabilities

Live Thrust

JIFE SUPPORT

- Atmosphere Management
- Water Management

ENVIRONMENTAL MONITORING

- O₂, CO₂, N₂
 - - Particles

FIRE SAFETY

- Detection
 - Suppression
 - Cleanup

Strategic **Outcome**

Enable long duration human exploration missions with AHS technologies

/aste Management

5 CHP Capability Areas

Capabilities

SPACESUIT PHYSIOLOGY

- Physiological Inputs & Outputs
- ConOps/Crew Capabilities
- Informatics
- Injury & Risk Mitigation
- Atmosphere/Pre-breathe

COUNTER **MEASURES (CM)**

- **Exercise Systems**
- Sensorimotor
- Physiology Monitorina

RADIATION PROTECTION

CONTROL AND LIFE SUPPORT SYSTEMS (ECLSS)

- Space Weather Forecasting
- Monitoring
- Shielding
- Health Risk Models
- Biomedical CM

EXPLORATION MEDICAL

Imaging

Pharmacv

FOOD & NUTRITION

Clothing

- Pre-packaged
- Food Resources
- Dietary Tracking
- Health & Performance

CREW HEALTH AND PERFORMANCE (CHP) SYSTEMS

Mission Characteristics That Drive AHS Capability Needs

- Mission Duration
 - Crew consumables and waste generation are fixed kg/crew-day
 - Duration needs to be long enough to offset system closure mass

- Crew safety and mission success goals
 - Longer duration increases risk
- Increased Probability of Sufficiency (POS) increase spares & certainty of spares life
- Increased ability for Earth independent diagnostics and repair

- Microgravity vs Surface
 - μg adds complexity to address liquid-gas-solids separation and other phenomena

- Frequent planned EVAs
 - Loss of water and oxygen (less available for recycling)
 - Increased crew fatigue and injury risk
 - Reduced cabin pressure to reduce pre-breathe time, impacts 14.7 psia/23% O₂ systems
 - Mitigating surface dust from EVA

- Number of crew members
 - Crew consumables are fixed kg/d

- Planetary protection and science integrity
 - Monitoring/sterilization/treatment/containment adds mass

- Long uncrewed periods
 - Adds mass to prevent or recover from microbial upset
 - Importance of habitat autonomy and robotic caretaking increases

- Availability of In-Situ Resource Utilization (ISRU) products (water and gases)
 - Influences recycling break-even point, possible ISRU-ECLS sensor and processor commonalities

AHS Envisioned Future Decomposition by Capability Area

LIFE SUPPORT

- Reliable long-duration life support with Earth independent diagnostics and repair (L,T,M)
- >20% reduction in spares and installed mass (T)
- Enable single missions >800 days w/o resupply (T)
- Repeated missions with >9 months dormancy (L,T,M)
- •>75% oxygen recovery at 2 mm-Hg CO₂ (T)
- High pressure oxygen recharge for EVA (L,M)
- >98% water recovery (L,T,M)
- Remove respirable lunar and Mars dust (L,M)
- Planetary protection compatible ECLSS venting (M)

ENVIRONMENTAL MONITORING

- Identify and quantify chemical (>12 water,
 >33 air) and microbial species inmission with out sample return (L,T,M)
- Ability to detect unknown constituents (T,M)
- Distinguish between fire, habitat dust, and surface dust particles (L,M)
- Support forward and backward planetary protection detection (both microbial and non-DNA techniques) (M)

FIRE SAFETY

- Test-verified partial gravity flammability characteristics and countermeasures (L,M)
- ECLSS compatible fire suppression (L,T,M)
- Reduce post fire clean-up time (L,T,M)
- Common fire safety strategy across element architectures (L,T,M)

(Mission need)
• L = Lunar surface

T = Transit to MarsM = Mars surface

- Jettison >90% of trash mass during Mars transit (T)
- Mars trash disposal compatible with planetary protection (M)
- In-flight autonomous logistics (L,T,M)
- Reducing clothing and wipes mass by >50% (L,T,M)
- Clothing flammability (and other non-metallics) >36% O2 (L,M)

SPACESUIT PHYSIOLOGY

- 100% of tasks within human performance (L,T,M)
- Predict and mitigate decompression sickness for surface EVA (L,M)
- Predict and mitigate suited injury (L,M)
- 6 Major physiological informatics parameters provided in-suit to enable real time self-assessment or loss of communication areas (L,M)

COUNTER-MEASURES

- Reduce mass and volume (L,T,M)
- Maintain/monitor fitness inflight to enable unassisted landing egress & EVA (L,T,M)
- Validated lunar and Mars fitness standards (L,M)

- 24-hr prediction of solar storm duration and intensity to >90% (L,T,M)
- High energy neutron detectors (L,T,M)
- Earth independent monitoring/forecasting (T,M)
- GCR shielding (T,M)

- In-mission diagnostics and treatment for 100 of 120 medical risk conditions (L,T,M)
- Autonomous medical skill and & decision support systems (T, M)
- Integrated data architecture (L,T,M)

- 100% of nutrient stability >5-year shelf life (T,M)
- Food acceptability >90% (L,T,M)
- <30% launched water content (T,M)
- Exploration countermeasure in-mission nutrition intake monitoring (L,T,M)

Advanced Habitation Systems State-of-the-Art by Capability Area

LIFE SUPPORT

- ISS life support demonstrations have identified required system reliability issues - fixes in work
- ~21,700 kg spares + food, 4 crew x 860days x Probability of Sufficiency (POS)=0.99
- Resupply every 2-6 months
- Nearly uninterrupted use of wetted systems
- ~47% oxygen recovery at 2 mm-Hg CO₂
- No in-flight EVA oxygen recharge capability
- ~93% water recovery
- HEPA filters require frequent manual cleaning

SPACESUIT

PHYSIOLOGY

COUNTER-**MEASURES**

- Physiological inputs/outputs adequately known for ISS EVA only
- Limited informatics; primarily groundmonitored
- Ground, ISS, and Apollo suit injuries occur (27 injury mechanisms identified)
- Prebreathe protocols for 14.7 and 10.2 psia microgravity only

ENVIRONMENTAL MONITORING

- Detailed gas/water chemical, microbial identification, and particle analysis only with samples returned to ground
- Major air constituents & limited targeted trace gases in flight
- Water analysis limited to total organic carbon
- Culture based microbial sample return, DNA sequencing limited to surface microbes
- Limited particle measurement capability demonstrated
- Mass intensive passive acoustic adsorption/damping

FIRE SAFETY

- Partial understanding of large ug fire propagation and properties
- Very limited knowledge of partial gravity fire properties
- Obsolete monitoring
- Cleanup by depress/repress
- Limited mask emergency response
- CO₂ based fire extinguishers

- Manual trash compaction, short storage time, module level jettison only
- No planetary protection compliance for waste disposal
- Manual & limited In-flight autonomous logistics tracking
- Disposable & flammable clothing, towels, & wipes

- 3+ large devices, large mass
- Returning crew egress from landing vehicle requires ground team assistance
- Exercise planning and monitoring via ground
- Limited sensorimotor countermeasures

- Mature shielding design tools
- Reconfigurable SPE shielding & limited GCR shielding
- Crew radiation monitoring
- Short term space weather using earth centric assets

- Evacuate <8 hrs
- Resupply 2-3 months
- Limited inmission diagnostic, treatment
- Ground medical data & decision support systems

- ~1.5 year shelf life, fresh food resupply every 2-3 months
- Only ~215 standard food items, µg plant experiments
- ~47% launched water content
- In-mission nutrient intake monitoring in development

Advanced Habitation Systems – Examples of Current Investments (1/2)

(There are many SBIR/STTR/ECI/ECF/CIF/STRG investments supporting lower TRL innovation not list below)

LIFE SUPPORT

Urine Brine Processor

Assembly

Compact Toilet System

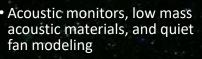
- Long duration reliability testing on ISS & ground
- Oxygen generation improved maintainability
- High Pressure O2 EVA resupply
- Sabatier enhancements
- 4-bed, Thermal amine, and CapiSORB CO₂ scrubbers
- Bosch CO₂ Reduction
- Methane Pyrolysis
- Hydrogen Separation
- Medical oxygen
- Long life condensing heat exchangers
- Wetted systems dormancy tolerance and recovery
- I₂ and Ag water biocides
- Partial-g water systems
- Compact toilet and lower mass fecal containers
- Urine pretreat storage and delivery
- Trace gas catalytic oxidizer
- Scroll & cyclone particulate filtration

ENVIRONMENTAL MONITORING

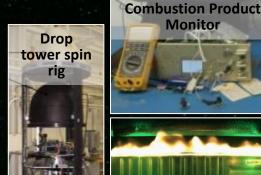
- Long duration reliability testing on ISS
- MinIon-DNA sequencer
- Air and water microbial sequencing sample preparation
- Air Particle Monitor
- Miniature air monitor
- Spacecraft Atmosphere Monitor (SAM)
- Potable Water Total Organic Carbon Analyzer
- Spacecraft Water Impurities Monitor (SWIM)

FIRE SAFETY

- Anomaly Gas Analyzer
- Water Spray mist fire extinguisher
- Smoke cleanup device
- Improved realistic fire training
- Saffire VI on Cygnus ug (varies ~2000-3700 cm²)
- CLPS partial-g (~150 cm²)
- Blue Origin partial-g (~40 cm²)
- Partial gravity drop tower spin test and development of nonspin capability


- Trash Compactor Processing System (TCPS)
- Trash-to-gas / OSCAR
- RFID Enabled Autonomous Logistics Management (REALM)
- Long wear clothing / laundry
- In-flight disinfectant solution generation for reusable wipes
- ISS Bishop airlock jettison bag
- Exploration trash jettison trade study
- Lunar vacuum cleaner testing

REALM-2 on


Astrobee

MiniTOCA

Advanced Habitation Systems – Examples of Current Investments (2/2)

(There are many SBIR/STTR/ECI/ECF/CIF/STRG investments supporting lower TRL innovation not list below)

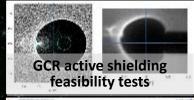
SPACESUIT PHYSIOLOGY

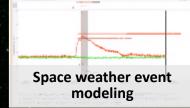
- Suit-independent analytics tool
- Suit user injury tracking system
- MEDPRAT
- Contingency CO₂ limits
- Crew state model & risk tool
- Physical & cognitive EVA simulations
- Personalized EVA informatics and decision support
- JARVIS informatics display
- Exploration Atmospheres pre-breathe validation
- Decompression sickness risk tool



COUNTER-MEASURES

- Exploration exercise device (E4D) development
- Vibration isolation systems
- No-Treadmill (T2) exercise ISS evaluation
- EVA muscle/aerobic standards
- EPIC informatics tools
- Heart rate/blood pressure/OCT monitors
- In-flight sensorimotor balance trainer validation
- In-flight bone assessment





- Lunar/Mars space weather forecasting
- Solar particle event (SPE) forecasting ML
- HERMES Gateway suite
- Orion-HERA
- EVA-ARD
- Active electrostatic shielding modeling study
- ISS-RAD and Adv Neutron Spectrometer
- Bio-dosimetry Polaris Project

- Impact analysis tool
- Exploration medical risk database
- Medical levels of care tool
- Handheld microscope
- Multi Med device
- Mini IntraVenous-fluid Generation (mini-IVGen)
- HoloLens MedTED
- Integrated Sim test bed
- Exploration Formulary
- Stability/toxicity study
- Automated med inventory tool dev
- CHP Integrated Data Architecture

- Crew Health And Performance Analog (CHAPEA)
- Ohalo/ROSbio plant growth facility
- Hurdle processing/ storage/temp study
- BPS crop evaluations
- CUBES & Synthetic Bio
- NextSTEP Xroots aeroponics
- Deep Space Food Challenge

-

Advanced Habitation Systems – SCLT Top Priorities – indicated by white text

(Gray text goals are still important but not a top priority)

LIFE SUPPORT

- Reliable long-duration life support with Earth independent diagnostics and repair (L,T,M)
- >20% reduction in spares and installed mass (T)
- Enable single missions >800 days w/o resupply (T)
- Repeated missions with >9 months dormancy (L,T,M)
- •>75% oxygen recovery at 2 mm-Hg CO₂ (T)
- High pressure oxygen recharge for EVA (L,M)
- >98% water recovery (L,T,M)
- Remove respirable lunar and Mars dust (L,M)
- Planetary protection compatible ECLSS venting (M)

ENVIRONMENTAL MONITORING

- Identify and quantify chemical (>12 water,
 >33 air) and microbial species inmission with out sample return (L,T,M)
- Ability to detect unknown constituents (T,M)
- Distinguish between fire, habitat dust, and surface dust particles (L,M)
- Support forward and backward planetary protection detection (both microbial and non-DNA techniques) (M)

FIRE SAFETY

- Test-verified partial gravity flammability characteristics and countermeasures (L,M)
- ECLSS compatible fire suppression (L,T,M)
- Reduce post fire clean-up time (L,T,M)
- Common fire safety strategy across element architectures (L,T,M)

- Jettison >90% of trash mass during Mars transit (T)
- Mars trash disposal compatible with planetary protection (M)
- In-flight autonomous logistics (L,T,M)
- Reducing clothing and wipes mass by >50% (L,T,M)
- Clothing flammability (and other non-metallics) >36% O2 (L,M)

SPACESUIT PHYSIOLOGY

- 100% of tasks within human performance (L,T,M)
- Predict and mitigate decompression sickness for surface EVA (L,M)
- Predict and mitigate suited injury (L,M)
- 6 Major physiological informatics parameters provided in-suit to enable real time self-assessment or loss of communication areas (L,M)

COUNTER-MEASURES

- Reduce mass and volume (L,T,M)
- Maintain/monitor fitness inflight to enable unassisted landing egress & EVA (L,T,M)
- Validated lunar and Mars fitness standards (L,M)

- 24-hr prediction of solar storm duration and intensity to >90% (L,T,M)
- High energy neutron detectors (L,T,M)
- Earth independent monitoring/forecasting (T,M)
- GCR shielding (T,M) active shielding feasibility study

- In-mission diagnostics and treatment for 100 of 120 medical risk conditions (L,T,M)
- Autonomous medical skill and & decision support systems (T, M)
- Integrated data architecture (L,T,M)

- 100% of nutrient stability >5-year shelf life (T,M)
- Food acceptability >90% (L,T,M)
- <30% launched water content (T,M)
- Exploration countermeasure in-mission nutrition intake monitoring (L,T,M)

Acronyms

NASA

- AHS Advanced Habitation Systems
- ARD Active Radiation Dosimeter
- CHAPEA Crew Health and Performance Analog
- CHP Crew Health and Performance
- CIF Center Innovation Fund
- CM Counter Measures
- E4D Exploration Exercise Device
- ECI Early Career Initiative
- ECF Early Career Faculty
- ECLS Environmental Control and Life Support
- ECLSS Environmental Control and Life Support System
- EPIC Exercise and Performance Information Console
- EVA Extravehicular Activity
- GCR Galactic Cosmic Rays
- HEPA High Efficiency Particulate Air
- HERA Hybrid Electronic Radiation Assessor
- HERMES Heliophysics Environmental and Radiation Measurement Experiment Suite
- ISRU In-situ Resource Utilization
- ISS International Space Station
- IVGen IntraVenous Generation

- JARVIS Joint Augmented Reality Visual Informatics System
- MEDPRAT Medical Extensible Dynamic Probabilistic Risk Assessment Tool
- MedTED Medical Technology Demonstration
- ML Machine Learning
- NBL Neutral Buoyancy Laboratory
- OCT Optical coherence tomography
- OSCAR Orbital Syngas/Commodity Augmentation Reactor
- POS Probability of Sufficiency
- RAD Radiation Assessment Detector
- REALM RFID Enabled Autonomous Logistics Management
- SAM Spacecraft Atmosphere Monitor
- SBIR Small Business Innovative Research
- SCLT System Capability Leadership Team
- SPE Solar Particle Event
- STRG Space Technology Research Grants
- STTR Small Business Technology Transfer
- SWIM Spacecraft Water Impurities
- TCPS Trash Compactor Processing System
- TRL Technology Readiness Level