

EXPLORESPACE TECH

LIVE: In Situ Resource Utilization (ISRU)
NASA Space Technology Mission Directorate

STMD welcomes feedback on this presentation. Please visit https://techport.nasa.gov/framework/feedback if you have any questions or comments regarding this presentation.

LIVE: Develop exploration technologies and enable a vibrant space economy with supporting utilities and commodities

Scalable ISRU production/utilization capabilities including sustainable commodities* on the lunar & Mars surface

COMMERCIAL SCALE WATER, OXYGEN, METALS & COMMODITY PRODUCTION

- Lunar resources mapped at meter scale for commercial mining
- 10's of metric tons of commodities per year for initial goal commercial usage
- Scalable to 100's to 1000's metric tons per year

COMMODITIES FOR HABITATS & FOOD PRODUCTION

- Water, fertilizers, carbon dioxide, and other crop growth support
- Crop production habitats and processing systems
- Consumables for life support, EVAs, and crew rovers/habitats for growing human space activities

IN SITU DERIVED FEEDSTOCK FOR CONSTRUCTION, MANUFACTURING, & ENERGY

- Initial goal of simple landing pads and protective structures
- 100's to 1000's metric tons of regolith-based feedstock for construction projects
- 10's to 100's metric tons of metals, plastics, and binders
- Elements and materials for multi-megawatts of energy generation and storage
- Recycle, repurpose, and reuse manufacturing and construction materials & waste

COMMODITIES FOR COMMERCIAL REUSABLE IN-SPACE AND SURFACE TRANSPORTATION AND DEPOTS

- 30 to 60 metric tons per lander mission
- 100's to 1000's metric tons per year of for Cis-lunar Space
- 100's metric tons per year for human Mars transportation

IN SITU RESOURCE UTILIZATION (ISRU) INTERFACES WITH MULTIPLE STRATEGIC OUTCOMES AND REQUIRE SUPPORT FROM OTHER PT/SCLTS

ISRU Outcome: Scalable ISRU production/utilization capabilities including sustainable commodities on the lunar & Mars surface.

Thrusts	Outcomes		
Go Rapid, Safe, and Efficient Space Transportation	 Develop nuclear technologies enabling fast in-space transits. Develop cryogenic storage, transport, and fluid management technologies for surface and in-space applications. Develop advanced propulsion technologies that enable future science/exploration missions. 	←	Cryogenic Fluid Management –liquefaction, storage, and transfer
Land Expanded Access to Diverse Surface	 Enable Lunar/Mars global access with ~20t payloads to support human missions. Enable science missions entering/transiting planetary atmospheres and landing on planetary bodies. Develop technologies to land payloads within 50 meters accuracy and avoid landing hazards. 		Advanced Propulsion - Provide propellant to reduce landed mass; increase ascent vehicle capability; reusability Entry Descent and Landing - Ascent Vehicle design
Destinations		<i></i>	Advanced Power Systems – Receive power; provide fuel cell consumables; alternative thermal storage; common technologies
Live Sustainable Living and Working Farther from Earth	Develop exploration technologies and enable a vibrant space economy with supporting utilities and commodities Sustainable power sources and other surface utilities to enable continuous lunar and Mars surface operations. Scalable ISRU production/utilization capabilities including sustainable commodities on the lunar & Mars surface. Technologies that enable surviving the extreme lunar and Mars environments.		Advanced Thermal Management – 10's KW thermal heat rejection; shutdown or operation in lunar night and shadowed regions
	Autonomous excavation, construction & outfitting capabilities targeting landing pads/structures/habitable buildings utilizing in situ resources. Enable long duration human exploration missions with Advanced Life Support & Human Performance technologies.		Autonomous Excavation, Construction, & Outfitting Receive/remove regolith; provide resource information and manufacturing/construction commodities; common technologies
Explore Transformative Missions and Discoveries	 Develop next generation high performance computing, communications, and navigation. Develop advanced robotics and spacecraft autonomy technologies to enable and augment science/exploration missions. Develop technologies supporting emerging space industries including: Satellite Servicing & Assembly, In Space/Surface Manufacturing, and Small Spacecraft technologies. Develop vehicle platform technologies supporting new discoveries. 		Advanced Habitation Systems – Provide consumables; receive waste & trash; common technologies
	Develop transformative technologies that enable future NASA or commercial missions and discoveries		Autonomous Systems & Robotics – Mobile platforms; Receive control and monitoring of complex ISRU operations

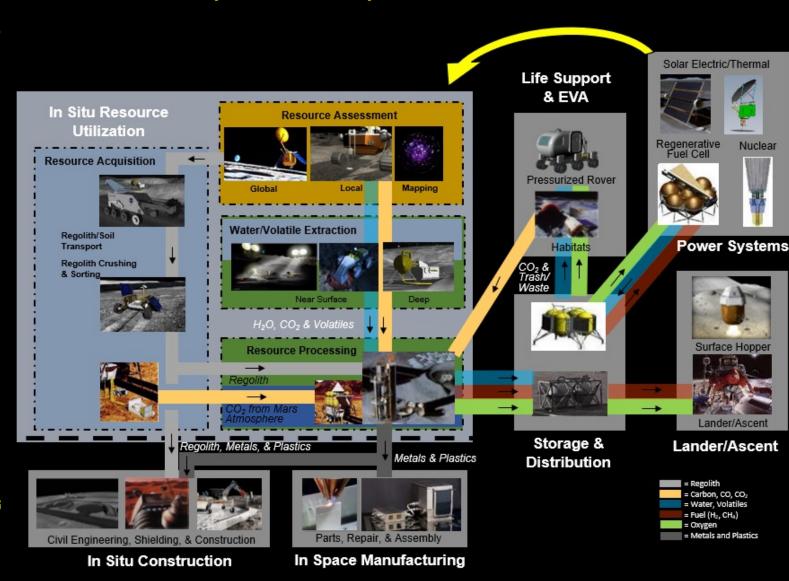
In Situ Resource Utilization (ISRU) Capability - 'Prospect to Product'

ISRU involves any hardware or operation that harnesses and utilizes 'in-situ' resources to create commodities* for robotic and human exploration and space commercialization

Destination Reconnaissance & Resource AssessAssessment and mapping of physical, mineral, chemical, and water/volatile resources, terrain, geology, and environment

Resource Acquisition, Isolation, & Preparation Atmosphere constituent collection, and soil/material collection via drilling, excavation, transfer, and/or manipulation before Processing

Resource Processing


Chemical, thermal, electrical, and or biological conversion of acquired resources and intermediate products into

- Mission Consumables
- Feedstock for Construction & Manufacturing

Water/Volatile Extraction

A subset of both Resource Acquisition and Processing focused on water and other volatiles that exist in extraterrestrial soils

- ➤ ISRU is a capability involving multiple disciplines and elements to achieve final products
- ▶ ISRU does not exist on its own. It must link to users/customers of ISRU products

ISRU Functional Breakdown And Flow Diagram

Destination Reconnaissance and Resource Assessment

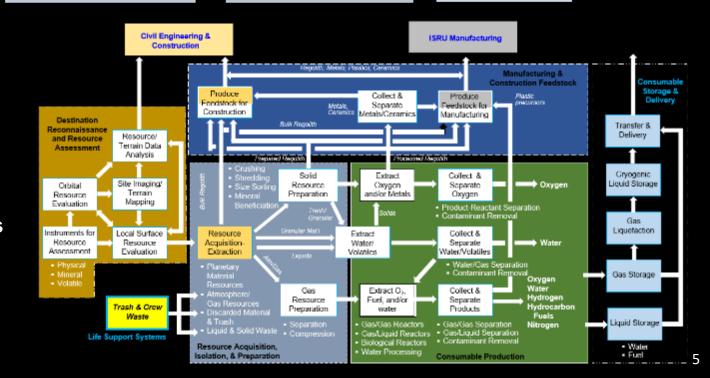
- Site Imaging/Terrain Mapping
- Instruments for Resource Assessment
- Orbital Resource Evaluation
- Local Surface Resource Evaluation
- Resource/Terrain/Environment Data Fusion and Analyses

Resource Acquisition, Isolation, and Preparation

- Resource Excavation & Acquisition
- Resource Preparation before Processing
- Resource Transfer
- Resource Delivery from Mine Site and Removal

Resource Processing for Production of Mission Consumables

- Resource Storage and Feed To/From Processing Reactor
- Regolith Processing to Extract Oxygen
- Regolith Processing to Extract Water
- Carbon Dioxide Processing
- Water Processing
- Instrumentation to Characterize Processing Performance
- Product/Reactant Separation
- Contaminant Removal from Reagents/Products


Resource Processing for Production of Manufacturing and Construction Feedstock

- In Situ Excavation and Movement for Construction
- Resource Preparation for Construction Feedstock
- Material transfer
- Resource Processing to Extract Metals/Silicon
- Resource-Trash/Waste Gas Processing to Produce Methane/Plastics

Cross Cutting

- Planetary Simulants for Test & Verification
- Planetary Regolith/Environment Test Chambers

- Functional Breakdown and Flow Diagram used to understand:
 - Technology State of the Art and gaps
 - Connectivity Internally and with other disciplines
 - Influence of technologies on complete system and other functions
- ISRU functions have shared interest w/ Autonomous Excavation, Construction, & Outfitting (AECO)
 - Destination Reconnaissance
 - Resource Excavation & Delivery
 - Construction Feedstock Production

P = Provided to ISRU S = Supplied by ISRU Italic = Other Disciplines

- Architecture elements must be designed with ISRU product usage in mind from the start to maximize benefits
- Infrastructure capabilities and interdependencies must be established and evolve with ISRU product users and needs
 - Transition from Earth-supplied to ISRU-supplied
 - Guided by overarching Site Master Plan

Power:

- · Generation, Storage, & Distribution (P)
- ISRU-derived electrical /thermal (S)
 Advanced Power Systems

Transportation to/from Site:

- Delivery (P)
- Propellants & Depots (S)
 Advanced Propulsion
 Entry Descent and Landing

Communications & Navigation (P)

- To/From Site
- Local

Adv. Communication
& Navigation

Maintenance & Repair

Logistics Management

- Replacement parts (P)
- Feedstock (S)
 In Space/Surface
 Manufacturing

Living Quarters & Crew Support Services

- Water, O₂, H₂, Gases (S)
- Trash/waste (P)
- · Nutrients(S)

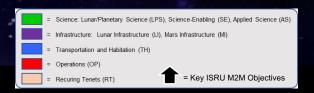
ISRU

Coordinated Mining Ops:

Areas for:

- i) Excavation
- ii) Processing
- iii) Tailings
- iv) Product Storage

In situ Instruments/Sensors Autonomous Systems Adv. Thermal Management


Commodity Storage and Distribution:

- Water & Cryogenic Fluids (CFM)
- Manufacturing & Construction Feedstock
 Cryogenic Fluid Management
 Autonomous Systems & Robotics
 Autonomous Excavation, Construction, & Outfitting

Feedstock for roads and structures (S)
 Autonomous Excavation, Construction, & Outfitting
 Autonomous Systems & Robotics

Moon to Mars (M2M) Blueprint Objectives: ISRU Objectives Traceability Matrix

Resource	Resource Assessment					
AS-3 ^{LM}	Characterize accessible lunar and martian resources, gather scientific research data, and analyze potential reserves to satisfy science and technology objectives and enable In-Situ Resource Utilization (ISRU) on successive missions.					
OP-3 ^{LM}	Characterize accessible resources, gather scientific research data, and analyze potential reserves to satisfy science and technology objectives and enable use of resources on successive missions.					
LPS-3 ^{LM}	Reveal inner solar system volatile origin and delivery processes by determining the age, origin, distribution, abundance, composition, transport, and sequestration of lunar and martian volatiles.					
TH-7 ^M	Develop systems for crew to explore, operate, and live on the martian surface to address key questions with respect to science and resources .					
SE-3 ^{LM}	Develop the capability to retrieve core samples of frozen volatiles from permanently shadowed regions on the Moon and volatile-bearing sites on Mars and to deliver them in pristine states to					

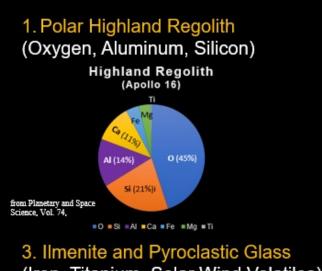
	· ·
LI-7 ^L	Demonstrate industrial scale ISRU capabilities in support of continuous human lunar presence and a robust lunar economy.
LI-8 ^L	Demonstrate technologies supporting cislunar orbital/surface depots, construction and manufacturing maximizing the use of in-situ resources , and support systems needed for continuous human/robotic presence.
MI-4 ^M	Develop Mars ISRU capabilities to support an initial human Mars exploration campaign.
OP-11 ^{LM}	Demonstrate the capability to use commodities produced from planetary surface or in-space resources to reduce the mass required to be transported from Earth.
TH-3 ^L	Develop system(s) to allow crew to explore, operate, and live on the lunar surface and in lunar orbit with scalability to continuous presence; conducting scientific and industrial utilization as well as Mars analog activities.

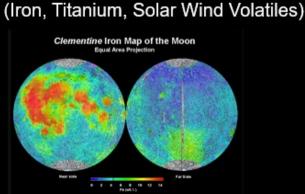
ISRU and **Usage**

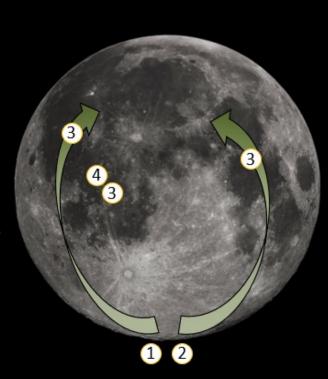
Respons	Responsible ISRU						
SE-7 ^{LM} :	Preserve and protect representative features of special interest, including lunar permanently shadowed regions and the radio quiet far side as well as martian recurring slope lineae, to enable future high-priority science investigations.						
OP-12 ^{LM}	Establish procedures and systems that will minimize the disturbance to the local environment, maximize the resources available to future explorers, and allow for reuse/recycling of material transported from Earth (and from the lunar surface in the case of Mars) to be used during exploration						
RT-6	Responsible Use: conduct all activities for the exploration and use of outer space for peaceful purposes consistent with international obligations, and principles for responsible behavior in space						

	,,
RT-1	International Collaboration: partner with international community to achieve common goals and objectives
RT-2	Industry Collaboration: partner with U.S. industry to achieve common goals and objectives
RT-3	Crew Return: return crews safely to Earth while mitigating adverse impacts to crew health
RT-4	Crew Time: maximize crew time available for science and engineering activities within planned mission durations
RT-5	Maintainability and Reuse: when practical, design systems for maintainability, reuse, and/or recycling to support the long-term sustainability of operations and increase Earth independence
RT-6	Responsible Use: conduct all activities for the exploration and use of outer space for peaceful purposes consistent with international obligations, and principles for responsible behavior in space
RT-7	Interoperability: enable interoperability and commonality (technical, operations and process standards) among systems, elements, and crews throughout the campaign
RT-8	Leverage Low Earth Orbit: leverage infrastructure in Low Earth Orbit to support M2M activities
RT-9	Commerce and Space Development: foster the expansion of the economic sphere beyond Earth orbit to support U.S. industry and innovation

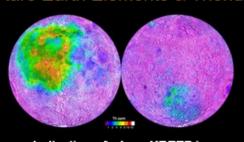
These are the Recurring Tenets; themes common across all blueprint objectives.


Superscript text indicates the applicability to Lunar (L), Martian (M) or both (LM).


modern curation facilities on Earth.


Time and Spatial Evolution of Lunar Resources and Commodities for Commercial and Strategic Interests

- ISRU starts with the easiest resources to mine, requiring the minimum infrastructure, and providing immediate local usage
- The initial focus is on the lunar South Pole region (highland regolith and water/volatiles in shadowed regions)
 - ISRU will evolve to other locations, more specific minerals, more refined products, and delivery to other destinations



2. Polar Water/Volatiles

4. Rare Earth Elements & Thorium

Indication of where KREEP is (Procellerum KREEP Terrane)

Commodities

- Oxygen
- Water
- Bulk & Refined Regolith
- Raw & Refined Metals (Al, Fe, Ti)
- Silicon and Ceramics
- ConstructionFeedstock
- Manufacturing Feedstock
- Fuels, Plastics, Hydrocarbons
- Food/Nutrient Feedstock

Lunar ISRU Commodities:

NASA

Polar Water, Oxygen from Regolith, and Feedstocks/Precursors

Water (and Volatiles) from Polar Regolith

- Form, concentration, and distribution of Water in shadowed regions/craters is not known
 - Technologies & missions in work to locate and characterize resources to reduce risk for mission incorporation
- Provides 100% of chemical propulsion propellant mass
- Polar water is "Game Changing" and enables long-term sustainability
 - Strongly influences design and reuse of cargo and human landers and transportation elements
 - Strongly influences location for sustained surface operations

Oxygen/Metal from Regolith

- Lunar regolith is >40% oxygen (O₂) by mass
 - Polar highland regolith: mostly anorthosite rich in aluminum and silicon; poor in iron
 - Equatorial mare regolith: regions of high iron/titanium, KREEP, and pyroclastic glasses
- Technologies and operations are moderate risk from past work and can be performed anywhere on the Moon
- Provides 75 to 80% of chemical propulsion propellant mass (fuel from Earth); O₂ for EVA, rovers, Habs.
- Experience from regolith excavation, beneficiation, and transfer applicable to mining Mars hydrated soil/minerals for water and in situ
 manufacturing and constructions

Manufacturing & Construction Feedstock

- Bulk or refined regolith (size sorted/mineral beneficiation) forms the bulk of the construction feedstock
- Metals and slag from oxygen extraction can be used or modified as feedstock
- Chemical and biological processing to produce binders and further refine construction materials
- > Requires close ties to In Space Manufacturing (ISM) and Autonomous, Excavation, Construction and Outfitting (AECO)

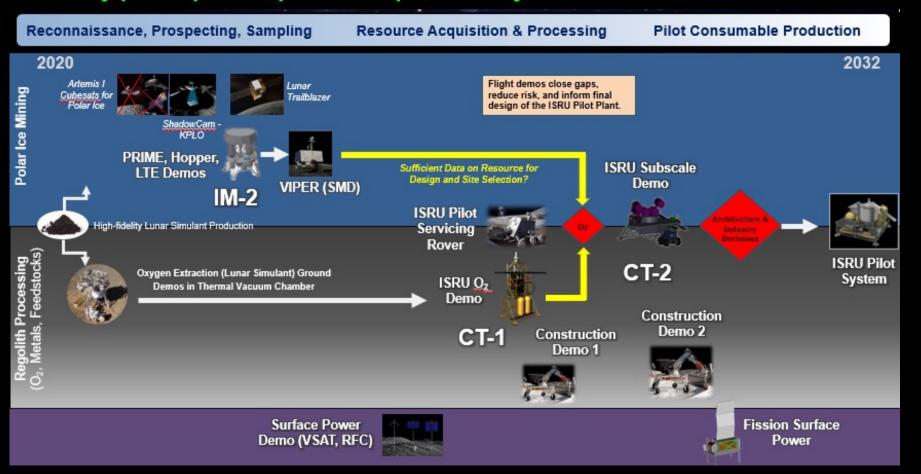
Support for Plant/Food/Nutrient Production

- Bulk or refined regolith (size sorted, mineral beneficiation, milled, treated) for plant growth media
- Chemical and biological processing (esp. of carbon/water) of wastes and in situ resources to produce nutrient and food precursors
- > Requires close ties to Life Support Systems

Plan to Achieve ISRU Outcome

Scalable ISRU production/utilization capabilities including sustainable commodities on the lunar & Mars surface

- Enable Industry to Implement ISRU for Artemis, Sustained Human Presence, and Space Commercialization
 - ➤ Define Initial and Long-term Customer Needs for ISRU-derived Products
 - Work within NASA and International Partners: Artemis elements, Moon/Mars Surface Architecture, and Critical Systems (Life Support & Food Production, Propulsion, Manufacturing, Construction)
 - Utilize Lunar Surface Innovation Consortium and work with Terrestrial/Space Industry to define near-term needs and to lay the foundation for long-term lunar economic development
 - Advance ISRU technologies and systems for lunar missions by utilizing NASA solicitations, public private partnerships, internal/external investments
 - Perform and support extensive ground development, low/micro-g flights, and integration/testing of hardware and systems
 - Coordinate requirements, development, and implementation of infrastructure required for ISRU operations (Power, Product Storage, Comm & Nav., Excavation and Construction, etc.)
 - Reduce Risk and Promote Investment in ISRU Systems and Products
 - Provide to industry key and enabling NASA capabilities and resources to include:
 - Perform fundamental research and technology development, both high TRL (near term) and low TRL (distant)
 - Information, facilities, and technologies (technology transfer)
 - Foster and support or lead system modeling/analysis, integration, and analog and environmental testing of diverse technologies from multiple companies and partners
 - Support data buys for lunar resource understanding and ISRU technologies/operations
 - Perform and support lunar resource assessment and technology demonstrations (CLPS, HLS, Int'l Partner, Industry)
- Promote Industry-led ISRU Development thru End-to-End ISRU Production of Commodities (i.e. Pilot Plant)


 Production at sufficient scale to eliminate risk of Full-scale system

 - Initially use ISRU-derived commodity in non-mission critical applications (life support, hopper propellant, etc.)
- ISRU must be demonstrated on the Moon before mission-critical applications are flown
 - Utilize lunar flight demonstrations and Pilot Plant operations to break 'chicken and egg' cycle
 - Conduct prospecting missions to locate predicted water/ice reserves proximal to potential base camps.

ISRU Path to Full Implementation & Commercialization*

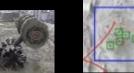
*Proposed missions and timeline are contingent on NASA appropriations, technology advancement, and industry participation, partnerships, and objectives

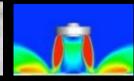
Full-scale implementation & Commercial Operations

This requires transition and 'Pull' from STMD to ESDMD and Industry (next chart)

- Dual Path that includes both Water Mining and Oxygen/Metal from Regolith
 - Regolith Processing and O₂/Metal Path supports Surface Construction activities and demonstrations as well
- Ground development of multiple critical technologies in both pathways underway to maximize success and industry involvement
- Resource assessment missions to obtain critical data on mineral and water/volatile resources have started
 - Significant uncertainty if existing missions are sufficient to define resources for design and site selection

Mid-Term Envisioned Future:


Evolve from STMD Demonstrations to Sustained Lunar Surface Operations

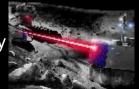

STMD Leads *Individual* Technology Development and Flight Demonstrations

Lunar Infrastructure (LI) Goal: Create an interoperable global lunar utilization infrastructure where U.S. industry and international partners can maintain continuous robotic and human presence on the lunar surface for a robust lunar economy without NASA as the sole user, while accomplishing science objectives and testing for Mars.

ISRU Demo & Pilot Plant

ISRU Pilot Excavator

Precision Landing (SPLICE) & Plume Surface Interaction


Cryo Fluid Management TP & Flight Demos

Autonomous Robotics, LIDAR, and Navigation In Situ Construction Demos

Vertical Solar Array Technology (VSAT)

Power Beaming

40 KWe Nuclear Reactor Demo

Regenerative Fuel Cell Power Demo

ESDMD Evolves STMD Capabilities into Sustained Artemis Base Camp Infrastructure and Commercial Operations

Demonstrate the capability to use commodities produced from planetary surface or in-space resources to reduce the mass required to be transported from Earth.

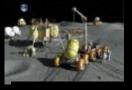
Develop system(s) to allow crew to explore, operate, and live on the lunar surface and in lunar orbit with scalability to continuous presence; conducting scientific and industrial utilization as well as Mars analog activities.

Large Scale Power Generation & Distribution

TH-3^L

Complex, Multi-Element ISRU Operations

Landing Pad & Infrastructure Construction


Cryogenic Consumables & Propellant Depots

Human and Robotic Maintenance & Repair

Offloading, Deployment, and Repurposing

Lander, Habitat, and Surface Vehicle Servicing

In Situ Propellant & Consumable Production Phases of Evolution and Use – Need to Plan for Scale-up from the Start

Demonstrate, Build Confidence, Increase Production and Usage

NPS = Near Permanent Sunlight
PSR = Permanently Shadowed Region

10 to 50 mT Range for Initial Full-Scale Production

	<u> </u>	<u> </u>		<u>*</u>																					
	Demo	Pilot	Crewed Ascent	Full Descent	Lockheed Martin ⁶		Lockheed Martin ⁶		Lockheed Martin ⁶		Lockheed Martin ⁶		Lockheed Martin ⁶		Lockheed Martin ⁶		Lockheed Martin ⁶		Lockheed Martin ⁶		Dynetics ⁶	Single	Human Landing	Human	Commercial
	Scale	Plant	Vehicle ¹	Stage ¹	LOCKITEC	a ivial till	Single Stage/	Stage	System -	Mars	Cis-Lunar														
			3 Stage Arc	h to NRHO	2 Stage	Single Stage	Drop Tanks	to NRHO ²	Starship ⁷	Transportation ³	Transportation ⁶														
Timeframe	days to months	6 mo - 1 year	1 mission/yr	1 mission/yr	per mission	per mission	per mission	per mission	per mission	per year	per year														
Demo/System Mass⁵	10's kg to low 100's kg	1 mt O ₂ Pilot 1.3 – 2.5 mt Ice Mining	1400 to 2200 kg	2400 to 3700 kg				Not Defined		Not Defined	29,000 to 41,000 kg														
Amount O ₂	10's kg	1000 kg	4,000 to 6,000 kg	8,000 to 10,000 kg	10,000 kg	33,000 kg	32,000 kg	30,000 to 50,000 kg	120,000 (NRHO) 440,000 (Earth)	185,000 to 267,000 kg	400,000 to 2,175,000 kg														
Amount H ₂	10's gms to kilograms	125 kg		1,400 to 1,900 kg	2,000 kg	7,000 kg	Methane Fuel	5,500 to 9,100 kg	Methane Fuel	23,000 to 33,000 kg	50,000 to 275,000 kg														
Power for O ₂ in NPS	100's W	5 to 6 KW	20 to 32 KW	40 to 55 KW				N/A		N/A	N/A														
Power for H ₂ O in PSR	100's W	~2 KW		~25 KW				14 to 23 KW			150 to 800 KW														
Power for H_2O to O_2/H_2 in NPS		~6 KW		~48 KWe				55 to 100 KWe			370 to 2,000 KWe														

¹Estimates from rocket equation and mission assumptions

Table provides rough guide to developers and other surface elements/Strategic Technology Plans for interfacing with ISRU

²Estimates from J. Elliott, "ISRU in Support of an Architecture for a Self-Sustained Lunar Base"

³Estimate from C. Jones, "Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign"

⁴Estimate from "Commercial Lunar Propellant Architecture" study

⁵Electrical power generation and product storage mass not included

⁶ APL Lunar Surface Innovation Consortium Suppy-Demand Workshop, 9/17/2020

⁷ Calculations/Assumptions from Publicly Available Data

Table uses best available studies and commercial considerations to guide development requirements/FOMs

NASA ISRU Capability State of the Art and Current Work

Resource Assessment – Flight Development (TRL 4-6)

- Multiple instruments under development by SMD and STMD for resource collection and assessment
- Instruments to be flown on CLPS missions PRIME-1 and VIPER for lunar ice characterization

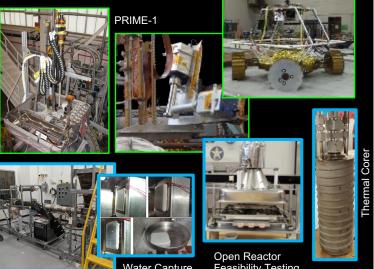
Water Mining – Proof of Concept (TRL 2/3)

- 3 water/ice mining approaches and 6 water extraction technologies examined
- Challenges: Space Robotic, Break the Ice Lunar

Oxygen Extraction from Regolith – Mare Regolith (TRL 4/5)

- Two Hydrogen Reduction and one Carbothermal Reduction systems built and tested at sub-Pilot scale; terrestrial operations, non-flight mass/power, mare regolith, days/weeks operation ('08 & '10)
- New work on combined Hydrogen Reduction/Carbothermal Reduction under laboratory conditions

Oxygen/Metal Extraction from Regolith – Highland Regolith (TRL 2/4)

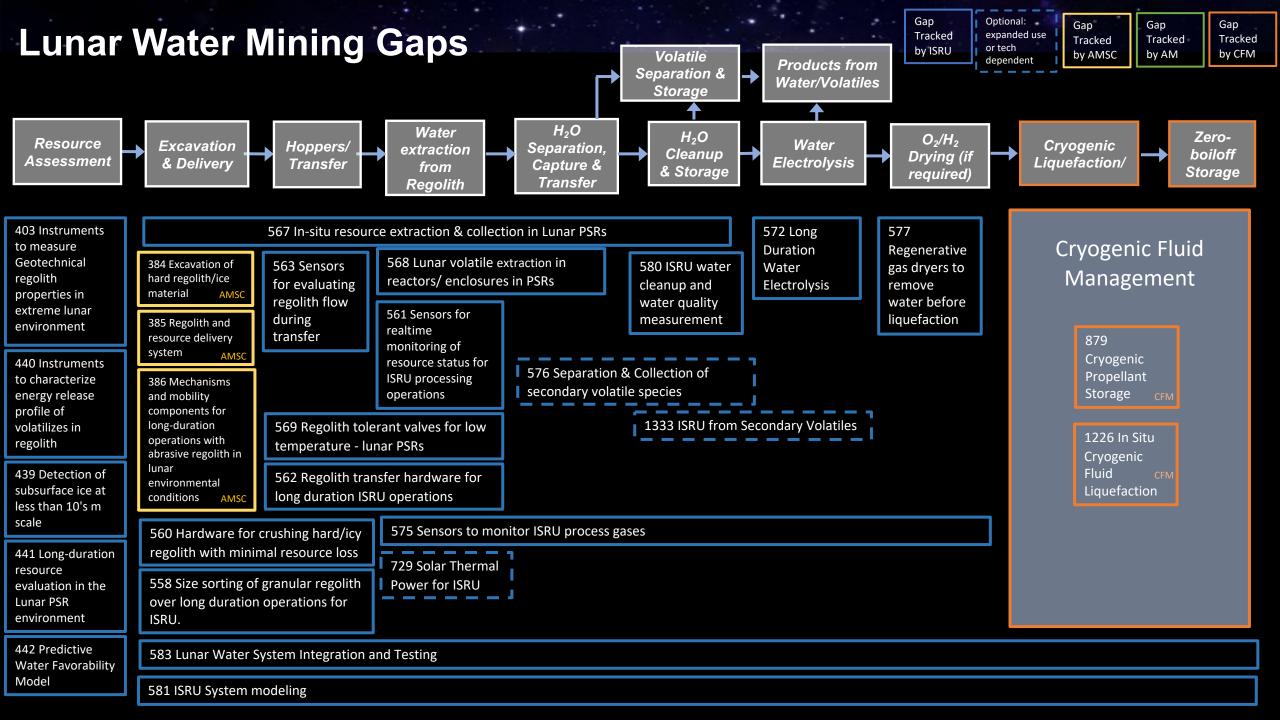

- Carbothermal Reduction (TRL 3/5)
- Molten Regolith Electrolysis (TRL 3/4); Molten Salt Electrolysis-ESA (TRL 3/4)
- Ionic Liquid Reduction (TRL 2/3)
- Low TRL Concepts: Hydrogen Plasma Reduction, Vapor Phase Pyrolysis, Bio-Mining, Alkaline Reduction

Lunar Regolith Processing Support

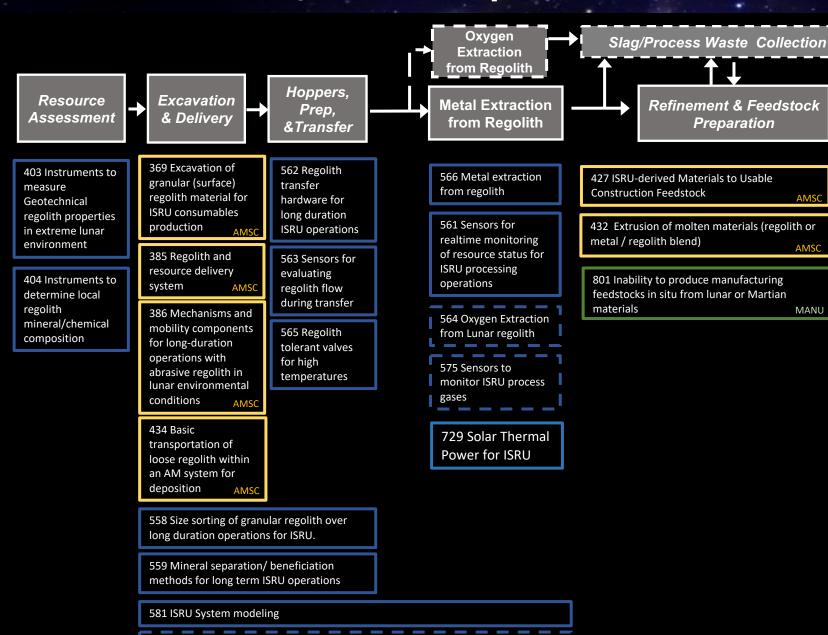
- Regolith column sealing and Regolith reactor valving
- Regolith transfer and conveyance
- Regolith size sorting & mineral beneficiation; Ilmenite beneficiation demonstrated on lunar-g aircraft
- Solar concentrators and solar energy transmission
- 9 water electrolysis projects in 3 different types (PEM, SOE, Alkaline)

Construction Feedstock (Low TRL: 2-4)

- Feedstock (blends of simulant and plastic) used in manufacturing & construction lab. demonstrations
- Mars concrète and soil/binders demonstrated: ACME & 3D Hab, Construction Centennial Challenge
- Size sorted lunar simulants being used for sintering construction tests
- 3D printer with simulant feedstock was tested on the ISS in the Additive manufacturing Facility
- Trash-to-Gas as start to conversion to fuels/plastics



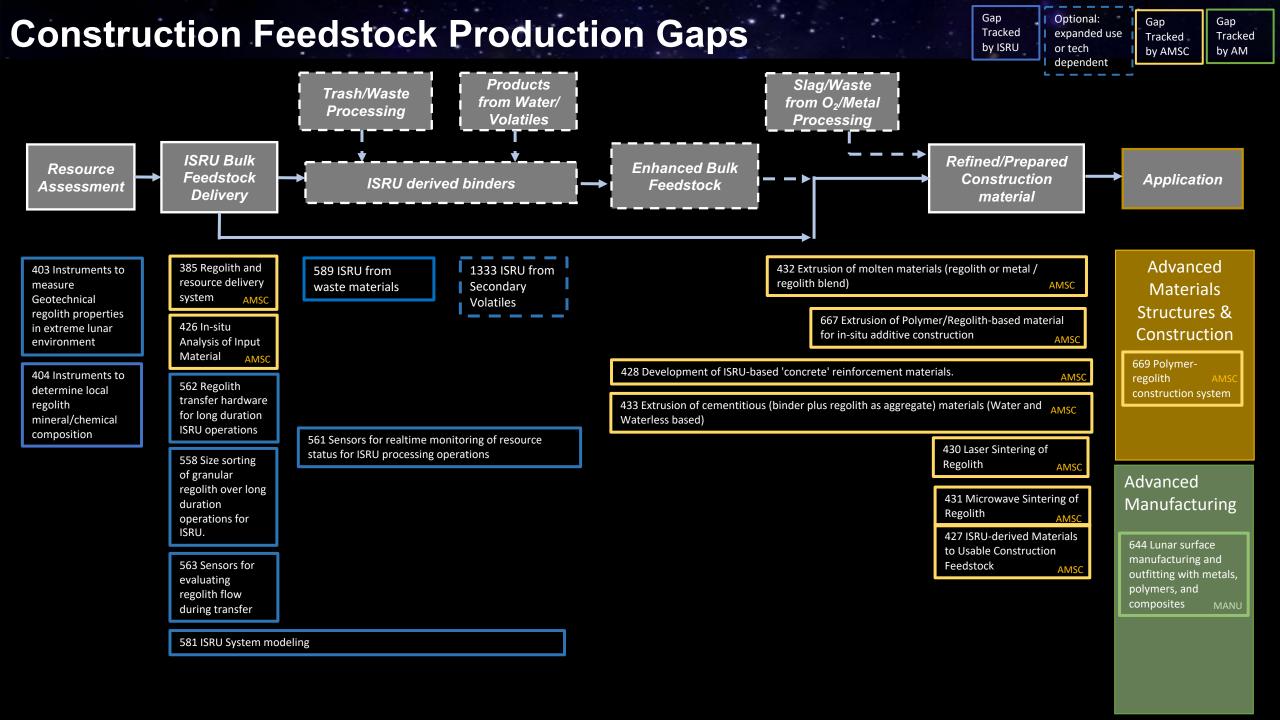
3D Printing w/ Lunar Concrete



Metal/Silicon Extraction Gaps

582 Lunar O2 System Integration & Testing

Gap Tracked by ISRU Optional: expanded use or tech dependent


Gap Tracked by AMSC Gap Tracked by AM

Advanced Manufacturing

Application

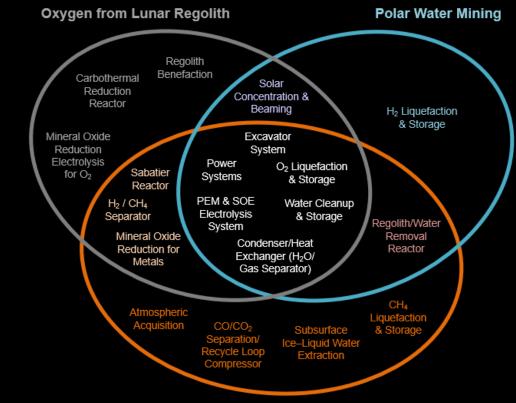
644 Lunar surface manufacturing and outfitting with metals, polymers, and composites MANU

Moon to Mars Forward ISRU

Identify, characterize, and quantify environments and resources for Science and ISRU

- Quantify concentration and lateral/vertical distribution of resources/water/volatiles at multiple locations to provide geological context for science-focused theories of resource placement and initial mining assessments.
- Test technologies and processes to reduce risk of future extraction/ mining systems

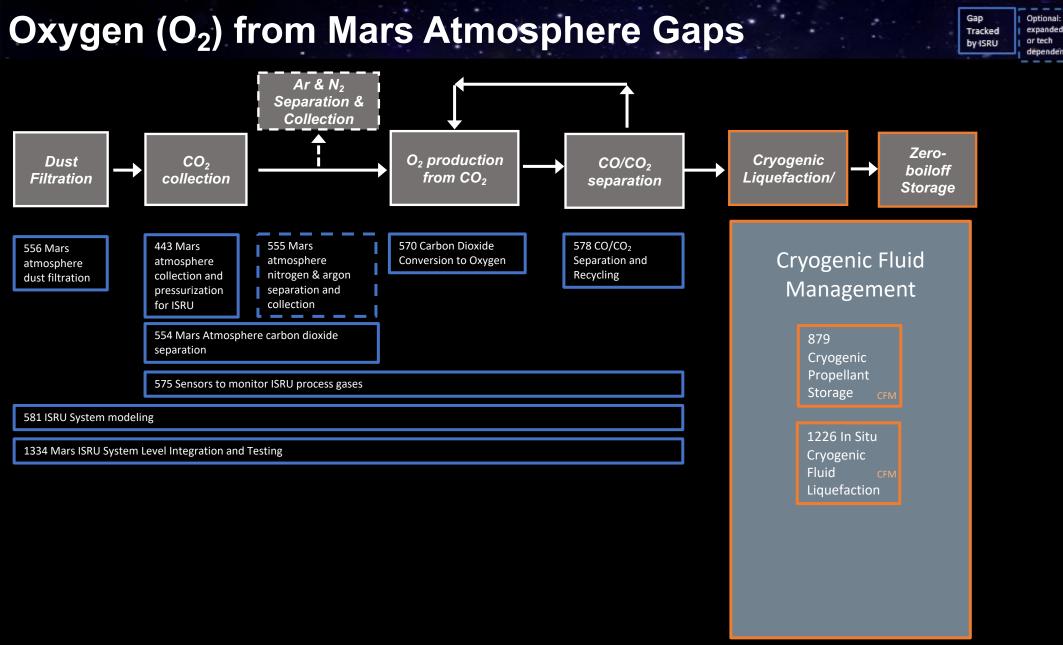
Demonstrate ISRU concepts, technologies, & hardware applicable to Mars


- ISRU for propellant production with modular/scalable hardware (both Moon and Mars require similar production rates)
 - Regolith excavation and delivery
 - Water and CO₂ collection, separation, chemical processing, and cleanup technologies
 - Liquefy, store, transfer, and fill ascent vehicle propellant tanks
- Surface civil engineering and infrastructure emplacement for repeated landing/ascent at same location

Use Moon for operational experience and mission validation for Mars

- Pre-deployment & remote activation and operation of ISRU assets without crew; especially excavation
- Making and transferring mission consumables (propellants, life support, power, etc.)
- Landing crew with 'empty' tanks with ISRU propellants already made and waiting

ISRU Technology Synergy



Mars Atmosphere & Water ISRU

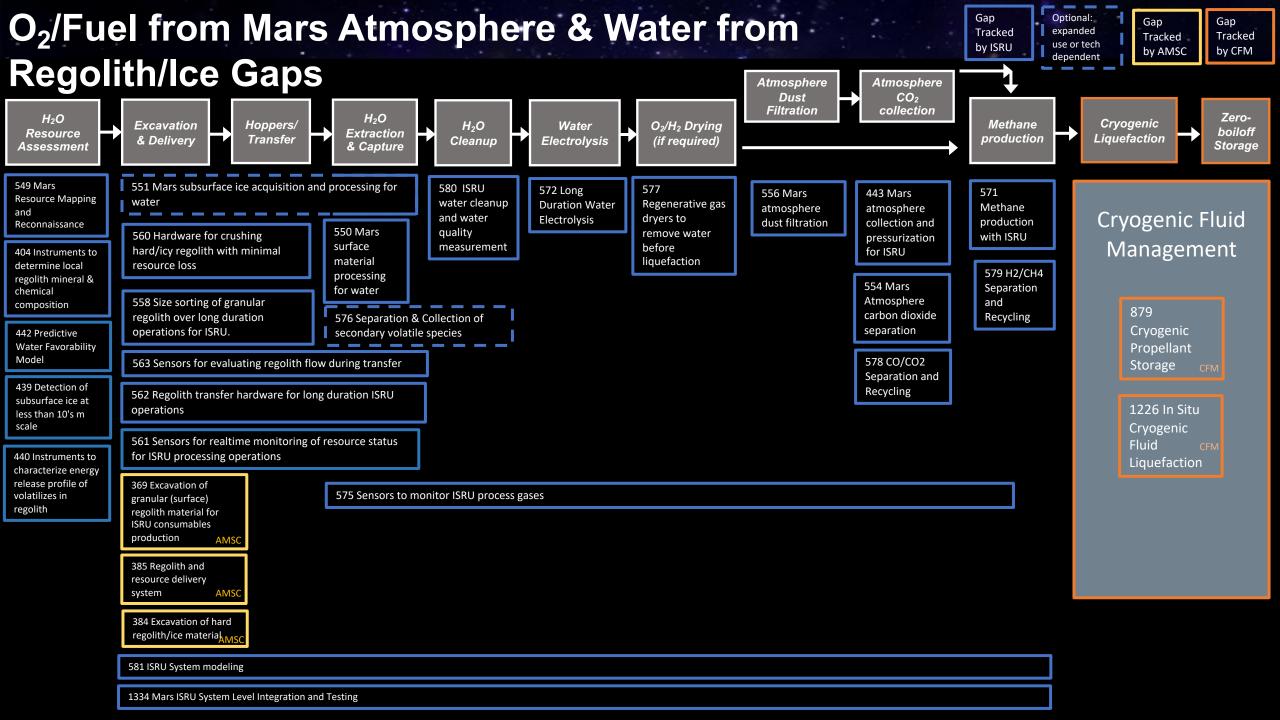
Lunar & Mars Production Synergy

Will use modularity to ensure applicability of hardware to both Moon and Mars ISRU

Gap

Tracked

by CFM


Tracked

by AM

Gap*

Tracked

by AMSC

ISRU Commodity Production Investment Status (1 of 2)

- Develop Critical Technologies for Lunar Oxygen Extraction
 - ☑ 6 different O₂ extraction technologies in development 2 showing significant promise
 - ☑ 3 different water electrolysis (PEM, SOE, Alkaline) approaches (with Life Support and Regenerative Power)
 - ☐ Interface and internal technologies/functional areas require further investment

Green = Significant Funded Activities

Yellow = Partially Covered; More Required

Red = Limited/No Funded Activities

- Develop Critical Technologies for Lunar Resource Assessment and Water Extraction
 - ☑ Significant number of SMD and STMD instrument technologies for resource assessment down to 1 m.; University/Public Challenges
 - Need to consider technologies for deeper >3 m assessment for water/volatiles based on some water deposit theories
 - □ 3 different water mining development approaches limited test success and cancellation
 - ☑ 3 different water electrolysis approaches (with Life Support and Regenerative Power)
 - ☐ Interface and internal technologies/functional areas require further investment
 - No dedicated robotic polar water/volatile resource assessment surface missions beyond VIPER currently in planning
 - No dedicated funded effort to develop resource maps for site selection
- Develop Critical Technologies for Manufacturing and Construction Feedstocks/Commodities
 - □ Technologies for raw metal/alloy extraction in work as part of O₂ extraction; Open solicitations and BIGIdeas Challenge
 - ☐ Technologies for regolith size sorting, mineral beneficiation, and regolith manipulation in work
 - □ Development and evaluation feedstocks to support manufacturing and construction techniques
 - Limited plastic/binder production from in situ resources; terrestrial and synthetic biology technologies in work for bio-plastic
- Evaluate and Develop Integrated Systems for Extended Ground Testing; Tie to Other Discipline Plans
 - ☑ NASA and APL performed/performing ISRU system evaluations
 - □ Dedicated modeling, evaluation criteria, and Figures of Merit (FOMs) established
 - Approval/funding for integration and testing of lunar technologies into end-to-end systems required to support ISRU Pilot plant development
 - Approval/funding for of human-mission scale Mars ISRU technologies into end-to-end system required to support MI-4
 - ☐ Facilities and simulants to support lunar environmental testing with regolith simulants Large chamber capability still an issue
 - ☐ Facilities and approach for extended mission analog operation and evaluation ground testing

ISRU Commodity Production Investment Status (2 of 2)

- Develop/Fly Resource Assessment & ISRU Demonstrations Missions leading to Pilot Plant operations by 2030
 - ☑ Orbital missions, PRIME-1, & VIPER funded and under development for launch
 - □ Lunar Trailblazer launch date and mission data later than desired. Actual spacecraft ready for launch in 2022
 - No clear plan for polar water/volatile resource assessment leading to Base Camp site selection predicated on success of VIPER
 - ☐ At least one demonstration planned for each ISRU commodity path
- Involve Industry/Academia with Goal of Commercial Space Operations at Scale
 - ☑ NIACs, SBIRs, BAAs, ACOs, & TPs led by industry underway for ISRU
 - STTRs, NIACs, LuSTR, NSTRF, ESI/ECF led by Academia underway for ISRU
 - ☑ Lunar Surface Innovation Consortium ISRU Focus Group underway and active; Supply/Demand Workshop
 - □ Center for the Utilization of Biological Engineering in Space (CUBES) Completed and new funding being sought
 - NASA prize competitions and university challenges: BIG Idea, Moon-Mars Ice Prospecting, Break the Ice Lunar, Lunabotics, CO₂ Conversion Challenge, Space Robotics Challenge
 - □ Selection/Competition strategy for ISRU demonstrations and Pilot Plant in work for industry involvement and commercialization

Green = Significant Funded Activities

Yellow = Partially Covered; More Required

Red = Limited/No Funded Activities

ISRU EFP - Next Step Priorities

Initiate solicitations with Industry to progress ISRU technologies to Demonstration & Pilot-scale flights

- Pursue oxygen and metal extraction demonstrations; delay water mining demonstration until better knowledge is obtained
- Provide feedstock technologies and capabilities to support construction demonstrations
- Identify and pursue new options/approaches for utilizing significant mission mass/frequency capabilities with HLS providers

Initiate Internal and Industry-led System-level integration of ISRU and infrastructure capabilities for Pilot/Full-Scale

- Expand ISRU system engineering, modeling, integration, and testing to enable technology and system selections
- Begin combining power, excavation, ISRU, storage & transfer, comm/nav, autonomy/avionics, maintenance/crew.

Expand Development of Metal/Aluminum Extraction & other Feedstock for Manufacturing & Construction

- Continue and expand work on combined oxygen and metal extraction technologies;
- Initiate work focused on metal extraction and processes leading to more pure/refined metals
- Consider longer-term interests in mare regolith minerals and resources: Ilmenite, Pyroclastic glasses, KREEP, Solar wind implanted volatiles
- Continue and expand construction feedstock/commodity development with in-space manufacturing and construction
- Evaluate synthetic biology technologies for bio-mining, bio-plastic, and some commodity feedstocks

Initiate Mars ISRU Technology and System Risk Reduction Development and Testing for M2M Objective MI-4

- Perform system Integration of existing/near-existing Mars human mission scale hardware and perform testing to reduce the risk for architecture insertion
- Coordinate evaluation of Mars resources and mission insertion with SMD and ESDMD/SOMD

Advance Lunar Polar Water/Volatile Prospecting/Mapping and Technology Development

- Coordinate Polar Resource Assessment and Mapping (M2M AS-3) with SMD, ESDMD/SOMD, and industry for mining site selection
- Continue evaluating/developing water mining technologies in parallel with polar resource assessment

Initiate Closer-Ties and Coordination with Life Support Systems

- Develop needs/objectives, and perform technology assessment/development for nutrients/food/agriculture feedstocks for sustained presence
- Work with life support on oxygen and water cleanup technologies and requirements
- Work with life support on conversion of wastes into usable products; eliminate trash dumping

Backup: Further Information on ISRU Gaps

ISRU Gap List (1 of 2)

Capability	Gap Number	Gap Name	Mars	Moon	Water	O2R	Metal	Raw Regolith	Atm	Other
ISRU	403	Instruments to measure Geotechnical regolith properties in extreme lunar environment	muio	X	Trate.	OZI.	Wictar	naw negonen	716	G tile!
ISRU	404	Instruments to determine local regolith mineral/chemical composition	V	Х				V		
ISRU	439	Detection of subsurface ice at less than 10's m scale	Х	Х						V
ISRU	440	Instruments to characterize energy release profile of volatilizes in regolith	Х	Х						
ISRU	441	Long-duration resource evaluation in the Lunar PSR environment		Х						
ISRU	442	Predictive Water Favorability Model	Х	Х						
ISRU	443	Mars atmosphere collection and pressurization for ISRU	Х							
ISRU	549	Mars Resource Mapping and Reconnaissance	X							
ISRU	550	Mars surface material processing for water	X							
ISRU	551	Mars subsurface ice acquisition and processing for water	X							
ISRU	554	Mars atmosphere carbon dioxide separation	Х		v					
ISRU	555	Mars atmosphere nitrogen/argon separation and collection	Х		V					
ISRU	556	Mars atmosphere dust filtration	X		V					
ISRU	558	Size sorting of granular lunar regolith over long duration operations for ISRU.	X	Х						
ISRU	559	Mineral separation/beneficiation methods for long term ISRU operations	X	Х						V
ISRU	560	Hardware for crushing hard/icy regolith with minimal resource loss	Х	Х						
ISRU	561	Sensors for realtime monitoring of resource status for ISRU processing operations	X	Х						
ISRU	562	Regolith transfer hardware for long duration ISRU operations	X	Х						
ISRU	563	Sensors for evaluating regolith flow during transfer	X	Х						
ISRU	564	Oxygen Extraction from Lunar regolith		Х			V			
ISRU	565	Regolith tolerant valves for high temperatures	v	Х						V
ISRU	566	Metal extraction from regolith		Х		V				
ISRU	567	In-situ resource extraction & collection in Lunar PSRs		Х						
ISRU	568	Lunar volatile extraction in reactors/enclosures in PSRs		Х						
ISRU	569	Regolith tolerant valves for low temperature - lunar PSRs		Х						
ISRU	570	Carbon Dioxide Conversion to Oxygen	Х							
ISRU	571	Methane production with ISRU	Х	V		V				
ISRU	572	Long Duration Water Electrolysis	Х	Х		V				V
ISRU	575	Sensors to monitor ISRU process gases	Х	Х						
ISRU	576	Separation & Collection of secondary volatile species	X	Х	V					
ISRU	577	Regenerative gas dryers to remove water before liquefaction	X	Х						
		CONTINUED on NEXT PA	GE							

ISRU Gap List (2 of 2)

Capability	Gap Number	Gap Name	Mars	Moon	Water	O2R	Metal	Raw Regolith	Atm	Other
		CONTINUED FROM PREVIOUS	PAGE							
ISRU	578	CO/CO2 Separation and Recycling	Χ							
ISRU	579	H2/CH4 Separation and Recycling	Х	v						
ISRU	580	ISRU water cleanup and water quality measurement	Х	Х						V
ISRU	581	ISRU System modeling	Х	X						
ISRU	582	Lunar O2 System Integration & Testing		Х			V			
ISRU	583	Lunar Water System Integration and Testing		X						v
ISRU	589	ISRU from waste materials and plastics	Х	Х						
ISRU	1280	Regenerative contaminant removal systems for ISRU Product/Reagent Gas Streams	V	Х					V	
ISRU	776	Lunar Resource Mapping and Reconnaissance		Χ		V	V			V
ISRU	836	Lunar Dirty Thermal Vacuum Large Test chambers		X						
ISRU	862	Mars Dirty Vacuum Large Test chambers	Х							
ISRU	1333	ISRU from Secondary Volatiles	Χ	Χ						V
ISRU	1334	Mars ISRU System Level Integration and Testing	Х							
ISRU	729	Solar Thermal Power for ISRU		Х	v					V