

LIVE: Thermal Management Systems NASA Space Technology Mission Directorate

STMD welcomes feedback on this presentation. Please visit <u>https://techport.nasa.gov/framework/feedback</u> if you have any questions or comments regarding this presentation.

Advanced Thermal Management Technologies to Enable Lunar and Martian Missions

Thermal management technologies that enable surviving the extreme lunar and Mars environments

Thermal Control for In-Space Transportation Systems

Thermal Control for Surface Environment Survival

Thermal Control for Entry, Descent, and Landing Systems

"Develop nuclear technologies enabling fast inspace transits"

"Develop cryogenic storage, transport, and fluid management technologies for surface and inspace applications" "Technologies that enable surviving the extreme lunar and Mars environments" Science Instrument Survival Power Systems Spacesuits Habitats Cold Tolerant Mechanisms ISRU Commodity Production Mobility Systems

"Enable lunar/Mars global access with 20t payloads to support human missions"

"Enable science missions entering/transiting planetary atmospheres and landing on planetary bodies"

Advanced Thermal Management Technologies to Enable Lunar and Martian Missions

Envisioned Future (Surface temperatures ranging from 400 K to 35 K)

Spacesuits

Closed-looped heat rejection for extreme temperature variations to minimize consumables Maintain optical properties in dusty environments (BOL average ratio of solar absorptivity to infrared emissivity (α/ϵ) of 0.21)

Power Systems Transport heat from source to power conversion system Reject waste heat efficiently (lightweight radiators with long-life, dust tolerant coatings)

> Science Instrument Survival Variable Heat Rejection to stay cool in temps up to 400 K while staying warm in temps down to 35 K

Cold Tolerant Mechanisms Years of continuous operation in temperatures down to 35 K Mobility Systems Variable Heat Rejection to stay cool in temps up to 400 K while staying warm in temps down to 35 K Freeze & dust tolerant thermal components

Habitats

Variable Heat Rejection to stay cool in temps up to 400 K while staying warm in temps down to 100 K Contamination-insensitive evaporator/sublimators Long-life condensing heat exchangers Efficient, non-toxic, single-loop temp control of crew quarters Long-term cold food storage to maintain nutrients

ISRU Commodity Production/Handing Water sublimation Commodity capture Liquefaction and storage Commodity management during surface transfers

All activities depicted not currently funded or approved. Depicts "notional future" to guide technology vision.

Advanced Thermal Management Technologies to Enable Lunar and Martian Missions

Current State of the Art and Progress Toward Goals

Technology Area	SoA (Flight Heritage)	Current NASA Investments (Technologies in Development)			Goal
07		TRL 1-3	TRL 4-6	TRL 7-9	
Variable Heat Rejection	Turn Down Ratio ~3:1 (Human class)		✓		Turn Down Ratio > 12:1
	Turn Down Ratio ~30:1 (Rover class)	V			Turn Down Ratio > 100:1
Advanced Radiators	19 kg/m ² (Deployable)				< 6 kg/m² (Deployable)
	6 kg/m ² (Body Mounted)				< 3 kg/m ² (Body Mounted)
Thermal Control Coatings	α = 0.35, ϵ = 0.87 after 5-year life	\checkmark			α < 0.25, ε > 0.88 after 10-year life
Advanced Heat Pipes	Medium heat fluxes	\checkmark	✓		High heat fluxes
	Moderate temperature operation				Low temperature operation
Dust Tolerant Thermal Systems	Intolerant (oversized)	\checkmark	\checkmark		90% pristine surfaces after 10-year life
Freeze Tolerant Thermal Components	0.067" ID Tube (Radiator)	\checkmark			> 0.125" ID Tube (Any TCS component)
Advanced Heat Exchangers	Standard Manufacturing	\checkmark	\checkmark		Non-standard manufacturing for optimization
Novel Heat Transfer Fluids	Two fluid loops				Efficient, non-toxic, freeze resistant single loop
	Traditional working fluids				Fluids with improved thermophysical properties
Cold Tolerant Mechanisms	Heated lubrication	\checkmark	\checkmark		Cold tolerant lubrication or lubrication-free
Advanced Cooling for Electronics	6.5 W/in ² , 30 kg/m ²	✓	\checkmark		> 12 W/in ² , < 9 kg/m ²
Integrated Structural/Thermal Elements	Independent elements	✓			Integrated elements with reduced system mass
Advanced Modeling Techniques	Independent analysis	\checkmark			Integrated analysis

Current Investments Summary

Novel Heat Transfer Fluids	Dust Tolerant Thermal Systems		
 Applications: Surface Functions Existing Funding: NONE Planned Funding: SBIR Solicitation for Lunar Habitat Applications Recommendations: More STRG Solicitations to increase opportunities for success (ECLSS applications) Continue seeding new low TRL work for any application, including fluids in high temp applications, such as fission power Invest in solid-state solutions such as leveraging of Shape Memory Alloy elastocaloric properties 	 Applications: Surface Functions Existing Funding: STMD & ESDMD Investments Advancements In - Electrodynamic Dust Shield applicability to radiators, dust sensors for surfaces Planned Funding: SBIR subtopic focus areas for thermal considerations in dust mitigation Recommendations: Integrate active dust mitigation on optical surfaces and study impacts/effectiveness Initiate development of passive solutions Expand dust work to include Mars regolith and environments 		
Advanced Radiators	Thermal Control Coatings		

Current Investments Summary

Freeze Tolerant Thermal Components

Advanced Modeling Techniques

 Applications: Surface, SmallSats, and Planetary Missions Existing Funding: STMD Investments Advancements In - Advanced manufacturing and multi-phase flow Planned Funding: NA Recommendations: Advancement of existing & previous developments to mid-TRL levels Increased collaboration with materials development 	 Applications: Surface, SmallSats, Aerospace, and Planetary Missions Existing Funding: STMD Investment Advancements In - Human thermal loads, magnetic refrigeration, and cryo systems Planned Funding: NA Recommendations: Solicitations to address integrated thermal loads on-surface Structural/thermal modeling advancements Incorporate AI/ML for reduced processing times
Integrated Structural/Thermal Elements	Advanced Heat Exchangers
 Applications: Surface, SmallSats, Aerospace, and Planetary Missions Existing Funding: STMD Investments Advancements In – Topology optimization for thermal systems Planned Funding: Thermal SBIR subtopic focus area for thermal topology optimization approved Recommendations: Solicitations to seed new ideas and advance existing developments Increased collaboration with ARMD and materials/process developers Develop self-sensing and self-healing technologies 	 Applications: Surface, SmallSats, Aerospace, and Planetary Missions Existing Funding: STMD, SMD, ESDMD, & ARMD Investments Advancements In - Advanced manufacturing, Novel fluid control, evaporative cooling Planned Funding: NA Recommendations: Investments to drive potential solutions toward a flight ready state Increase collaboration between Mission Directorates Closed-loop systems for EVA

Current Investments Summary

Advanced Heat Pipes

Variable Heat Rejection

 Applications: Surface, SmallSats, Aerospace, and Planetary Missions Existing Funding: STMD, SMD, & SST Investments Advancements in - hybrid, oscillating, and variable conductance heat pipes (including advanced manufacturing techniques) Planned Funding: NA Recommendations: Continue seeding new advancements (miniaturization and low temp operation) Push existing advancements toward tech demo 	 Applications: Surface and Planetary Missions Existing Funding: STMD & SMD Investments Advancements in – variable view factors, thermal switches, phase change materials, multi-phase flow, thermoelectric regulation Planned Funding: NA Recommendations: Continue seeding new advancements Push existing advancements toward tech demo
Cold Tolerant Mechanisms	Advanced Cooling for Electronics
 Applications: Surface and Planetary Missions Existing Funding: STMD & SMD Investments Advancements in - magnetic gears, phase change lubricant, bulk metallic glass gears Planned Funding: NA Recommendations: 	 Applications: Surface, SmallSats, Aerospace, and Planetary Missions <u>Existing Funding:</u> STMD Investments Advancements in – coldplates, textured cooling loops, dual-channel flow boiling, and microgap coolers <u>Planned Funding:</u> NA <u>Recommendations:</u>

Planned Development Approach

Order listed shows priorities for new starts due to missing or limited existing investments and descends to top priorities for continued development, demonstration, and infusion.

Tabu ala an Ana a	Current NASA Investments		estments	Recommendation
l echnology Area	(Technologies in Development)		elopment)	
	TRL 1-3	TRL 4-6	TRL 7-9	
Novel Heat Transfer Fluids				Initiate STRG projects
Novel Heat Transfer Fluids				Initiate SBIR projects
Dust Tolorant Thormal Systems	~	~		Include radiator specific implantation in mid-TRL projects
Dust Tolerant mermal systems				Determine applicability of mitigation tech to thermal systems
Integrated Structural/Thermal Elements	\checkmark			Initiate SBIR/GCD projects
Advanced Modeling Techniques	\checkmark			Initiate SBIR/GCD projects
Variable Heat Rejection	\checkmark	✓		Integrate maturing tech into demonstrations
Freeze Tolerant Thermal Components	\checkmark			Initiate SBIR/GCD projects
Advanced Radiators	~			Continue new low TRL developments
				Initiate SBIR/GCD projects
Thermal Centrel Centings	\checkmark			Initiate new low TRL developments
				Initiate mid TRL developments
Advanced Heat Pipes	\checkmark	\checkmark		Integrate maturing tech into demonstrations
Advanced Cooling for Electronics	\checkmark	\checkmark		Stay the course – move toward demo
Advanced Heat Exchangers	\checkmark	✓		Stay the course – move toward demo
Cold Tolerant Mechanisms	\checkmark	✓		Stay the course – move toward demo

Conclusions/Recommendations

- Near-term focus on novel fluids and dust tolerance is required to achieve surface goals
- Late mid-stage investments are crucial for buying down risk for flight program infusion
- Increase collaboration with CLPS, Small Sats, and Flight Opportunities to increase flight demonstration opportunities for maturing technologies
- Thermal Management technologies are highly integrated and support many outcomes and could therefore benefit from increased collaboration among developers
- Development of system-level performance requirements is needed to push component level solutions into integrated system-level solutions
- Continuous infusion of new thermal management ideas can significantly enhance planned architectures leading to enabling of future architectures

Acronyms and Symbols

- α solar absorptivity
- ϵ emissivity
- AI/ML Artificial Intelligence/Machine Learning
- ARMD Aeronautics Research Mission Directorate
- BOL Beginning Of Life
- CIF Center Innovation Fund
- CLPS Commercial Lunar Payload Services
- ECLSS Environmental Control and Life Support Systems
- ESDMD Exploration Systems Development Mission Directorate
- ESI Early Stage Innovations
- EVA Extravehicular Activity
- GCD Game Changing Development

•HEOMD – Human Exploration and Operations Mission Directorate

- ID Inner diameter
- ISRU In-situ Resource Utilization
- LDAR Lunar Dust Affects on Radiators
- OHP Oscillating Heat Pipes
- SBIR Small Business Innovative Research
- SMD Science Mission Directorate
- SoA State of the Art
- SOMD Space Operations Mission Directorate
- SST Small Spacecraft Technologies
- STMD Space Technology Mission Directorate
- STRG Space Technology Research Grants
- TCS Thermal Control Systems
- TRL Technology Readiness Level

